
Homotopical Patch Theory

Carlo Angiuli Edward Morehouse
Daniel R. Licata Robert Harper

Carnegie Mellon University

September 3, 2014

1



This talk is about doing (Darcs-like) patch theory inside of
homotopy type theory using functorial semantics.

2



Functorial Semantics

3



Functorial Semantics

Define equational theories as functors out of some category.

A group is a product-preserving functor G→ Set.

This idea is due to Bill Lawvere—that equational theories (like group theory) are categories, and their models (like
groups) are functors out of those categories. G defines what it means to be a group; a functor out of it is a group.

4



Functorial Semantics

The theory of groups, G, is generated by:

C ∈ Ob(G)

comp : C × C → C
e : 1→ C
−1 : C → C

such that (id× e); comp = id, . . .

G is a finite-product category generated by an object C, which represents the carrier of the group; and morphisms
generated by the identity element of C, a binary composition operator, and a unary inverse operator; satisfying laws.

5



Functorial Semantics

A product-preserving functor J−K : G→ Set is

a set JCK (object part of J−K)

a binary operation JcompK on JCK
an element JeK ∈ JCK
a unary operation J−1K on JCK

(morphism part of J−K)

such that JcompK(g, JeK) = g
for all g ∈ JCK, . . .

(that J−K respects
equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group
operations; and those operations must satisfy the group laws because the morphisms in G did. For the purposes of
this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run
it.

6



Functorial Semantics

A product-preserving functor J−K : G→ Set is

a set JCK (object part of J−K)

a binary operation JcompK on JCK
an element JeK ∈ JCK
a unary operation J−1K on JCK

(morphism part of J−K)

such that JcompK(g, JeK) = g
for all g ∈ JCK, . . .

(that J−K respects
equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group
operations; and those operations must satisfy the group laws because the morphisms in G did. For the purposes of
this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run
it.

6



Functorial Semantics

A product-preserving functor J−K : G→ Set is

a set JCK (object part of J−K)

a binary operation JcompK on JCK
an element JeK ∈ JCK
a unary operation J−1K on JCK

(morphism part of J−K)

such that JcompK(g, JeK) = g
for all g ∈ JCK, . . .

(that J−K respects
equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group
operations; and those operations must satisfy the group laws because the morphisms in G did. For the purposes of
this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run
it.

6



Functorial Semantics

A product-preserving functor J−K : G→ Set is

a set JCK (object part of J−K)

a binary operation JcompK on JCK
an element JeK ∈ JCK
a unary operation J−1K on JCK

(morphism part of J−K)

such that JcompK(g, JeK) = g
for all g ∈ JCK, . . .

(that J−K respects
equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group
operations; and those operations must satisfy the group laws because the morphisms in G did. For the purposes of
this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run
it.

6



Functorial Semantics

A product-preserving functor J−K : G→ Set is

a set JCK (object part of J−K)

a binary operation JcompK on JCK
an element JeK ∈ JCK
a unary operation J−1K on JCK

(morphism part of J−K)

such that JcompK(g, JeK) = g
for all g ∈ JCK, . . .

(that J−K respects
equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group
operations; and those operations must satisfy the group laws because the morphisms in G did. For the purposes of
this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run
it.

6



Homotopy Type Theory

7



Homotopy Type Theory

HoTT is a constructive, proof-relevant theory of equality inside
dependent type theory.

Equality proofs p : a =X b are identifications of a with b.

Everything I’ll do from here on is in HoTT, an extension of dependent type theory (like Agda or Coq).
8



Homotopy Type Theory

refl

a a b

p

!p

a

b

c

p q

q ◦ p

These identifications are reflexive, symmetric, and transitive, because equality is.
9



Homotopy Type Theory

We can have identifications of identifications.

a b

p

q

α β...

...
α,β : p =(a =X b) q

p,q : a =X b

a,b : X

}
X is a set

Because the identifications are proof-relevant—they come with evidence—those identifications can themselves be
identified. This leads to an infinite-dimensional tower of equalities. In “ordinary” types, these identifications repre-
sent exact equality, and are always reflexivity if they exist. In that case, where the equality types themselves are
uninteresting, we call the type a set.

10



Homotopy Type Theory

We can have identifications of identifications.

a b

p

q

α β...

...
α,β : p =(a =X b) q

p,q : a =X b

a,b : X

}
X is a set

Because the identifications are proof-relevant—they come with evidence—those identifications can themselves be
identified. This leads to an infinite-dimensional tower of equalities. In “ordinary” types, these identifications repre-
sent exact equality, and are always reflexivity if they exist. In that case, where the equality types themselves are
uninteresting, we call the type a set.

10



Homotopy Type Theory

We can have identifications of identifications.

a b

p

q

α β...

...
α,β : p =(a =X b) q

p,q : a =X b

a,b : X

}
X is a set

Because the identifications are proof-relevant—they come with evidence—those identifications can themselves be
identified. This leads to an infinite-dimensional tower of equalities. In “ordinary” types, these identifications repre-
sent exact equality, and are always reflexivity if they exist. In that case, where the equality types themselves are
uninteresting, we call the type a set.

10



Homotopy Type Theory

Functions preserve this structure.

X Y
f

a

b

f a

f b

p

...

ap f p

...

As expected, functions send equal elements to equal results. In fact, functions preserve all this structure, at all levels.
11



Homotopy Type Theory

Functions preserve this structure.

X Y
f

a

b

f a

f b

p

...

ap f p

...

As expected, functions send equal elements to equal results. In fact, functions preserve all this structure, at all levels.
11



Homotopy Type Theory

Higher Inductive Types introduce non-sets: arbitrary spaces.

loop

base

space Circle : Type where

base : Circle

loop : base =Circle base

This is the first way we’ll introduce interesting identifications into type theory; the other will come up in a bit. Note that
loop just generates identifications; we also get loop ◦ loop, !loop, etc.

12



Patch Theory

13



Repositories and Changes

Vec n String (a repository)

ADD s@l

RM l

. . .
(and changes to it)

such that
RM l ◦ ADD s@l = id. . .

(satisfying patch laws)

We want to study repositories and patches. For example, this is a concrete implementation of a (one-file) repository
and changes one might apply to it.

14



Repositories and Changes

id a

b

c

a

b

c

a

d

c

p

inv p

a

b

c

a

d

c a

d

e

p q

compose q p

We want to study the general phenomenon of repositories and changes (similar to how group theory was invented to
generalize symmetry groups). What sorts of things should be true of all patch theories? There are identity patches
at every repository, and patches are invertible and composable.

15



Repositories and Changes

Some laws hold in all patch theories. (compose id p = p)

Patches aren’t always applicable. (RM 5 in a 3-line file)

16



Patch Theory

num (an abstract repository)

add1

id, compose, inv. . . (with abstract patches)

such that
compose id p = p . . .

(satisfying patch laws)

Here’s an abstract theory of a repository. The idea is that the repository contains a single number, and the only
patches add to (or subtract from, thanks to inverses) that number.

17



Patch Theory

Abstract patches as a HIT:

space Patch : Type where

add1 : Patch

id : Patch

compose : Patch � Patch � Patch

inv : Patch � Patch

unitl : compose id p =Patch p
...

We can model these patches as a HIT. The patches are add1, identity, and compositions and inverses of these; and
we identify certain compositions by the groupoid laws (for example, identity is a left unit for composition).

18



Patch Theory

Interpret these patches functorially:

interp : Patch � (Int � Int)

interp add1 = λn.n+1
interp id = λn.n
interp (compose p2 p1) = λn.interp p2 (interp p1 n)

ap interp unitl : interp (compose id p) =Int→Int interp p
...

If we interpret num as the type Int, then we interpret patches as concretely effecting changes on Ints, in a functorial
way.

19



Patches as Identifications

In HoTT, equality is groupoidal and respected functorially!

Key idea: a patch taking a to b is an identification of a and b.

But the existence of identities, compositions, and inverses, and preservation thereof by functions, is already guaran-
teed in HoTT for identifications! We can take advantage of this by modeling patches as identifications.

20



Patches as Identifications

add1

num

space R : Type where

num : R

add1 : num =R num

Thus, we say the type of patches is num = num, which gives us the groupoid operations and laws, and functoriality, for
free! In this case, the patch theory R looks just like the circle. (Recall that the add1 constructor generates additional
identifications.)

21



Interpreting Patch Theory

R Set
I

add1

num

ap I add1

I num

I : R → Set

I num

= Int

: Set

ap I add1

: I num =Set I num

To use that built-in functoriality, if we interpret patches as identifications, then add1 is an identification between Int

and itself. How might we get one of those?
22



Interpreting Patch Theory

R Set
I

add1

num

ap I add1

Int

I : R → Set

I num = Int

: Set

ap I add1

: I num =Set I num

To use that built-in functoriality, if we interpret patches as identifications, then add1 is an identification between Int

and itself. How might we get one of those?
22



Interpreting Patch Theory

R Set
I

add1

num

ap I add1

Int

I : R → Set

I num = Int

: Set

ap I add1

: Int =Set Int

To use that built-in functoriality, if we interpret patches as identifications, then add1 is an identification between Int

and itself. How might we get one of those?
22



Univalence Axiom

Bijections between sets X and Y yield identifications X =Set Y.

ua : Bijection X Y → X =Set Y

In particular,

ua (λn.n+1) : Int =Set Int

The second way we add new identifications into type theory is by the univalence axiom. Remember, equality is proof-
relevant. We’re not saying isomorphic types are the same; we’re saying that we identify them via their isomorphism.

23



Univalence Axiom

Bijections between sets X and Y yield identifications X =Set Y.

ua : Bijection X Y → X =Set Y

In particular,

ua (λn.n+1) : Int =Set Int

The second way we add new identifications into type theory is by the univalence axiom. Remember, equality is proof-
relevant. We’re not saying isomorphic types are the same; we’re saying that we identify them via their isomorphism.

23



Interpreting Patch Theory

ua (λn.n+1)

Int

I num = Int (I on elements)

ap I add1 = ua (λn.n+1) (I resp. equality)

ap (ap I) unitl :

ap I (refl ◦ p) =Int=SetInt ap I p

(I resp. equality
of equalities)

Then the objects/elements part of I determines the way we interpret the abstract repository; I’s respect for equality
determines the way we interpret patches; and I’s respect for equalities of equalities ensures that the interpretation of
patches satisfies the patch laws (here, just the groupoid laws).

24



Interpreting Patch Theory

ua (λn.n+1)

Int

I num = Int (I on elements)

ap I add1 = ua (λn.n+1) (I resp. equality)

ap (ap I) unitl :

ap I (refl ◦ p) =Int=SetInt ap I p

(I resp. equality
of equalities)

Then the objects/elements part of I determines the way we interpret the abstract repository; I’s respect for equality
determines the way we interpret patches; and I’s respect for equalities of equalities ensures that the interpretation of
patches satisfies the patch laws (here, just the groupoid laws).

24



Interpreting Patch Theory

ua (λn.n+1)

Int

I num = Int (I on elements)

ap I add1 = ua (λn.n+1) (I resp. equality)

ap (ap I) unitl :

ap I (refl ◦ p) =Int=SetInt ap I p

(I resp. equality
of equalities)

Then the objects/elements part of I determines the way we interpret the abstract repository; I’s respect for equality
determines the way we interpret patches; and I’s respect for equalities of equalities ensures that the interpretation of
patches satisfies the patch laws (here, just the groupoid laws).

24



Now It Gets Tricky. . .

25



A Different Repository

Nat (a repository)

generated by λn.n+1 (and changes to it)

such that. . . (satisfying patch laws)

Let’s change the previous example a bit—how do we abstractly model the situation where what if the repository is a
natural number, with a patch to increment it?

26



A Different Patch Theory

num (an abstract repository)

add1

id, compose, inv. . . (with abstract patches)

such that. . . (satisfying patch laws)

The obvious solution is to do the same thing as before, but the problem is that this will give us inverse patches like
!add1. . .

27



A Different Patch Theory

But inverses don’t exist in general:

?? 0 1 2 ...

λn.n+1 λn.n+1

λn.n-1λn.n-1λn.n-1

. . . and this doesn’t actually work on all Nats! (By the way, this is one reason we would like HoTT without inverses,
which we call directed type theory.)

28



A Different Patch Theory

Index the contexts to characterize patch applicability:

doc 0 doc 1 doc 2 ...

add1 0 add1 1

!(add1 0)!(add1 1)

space I* : Type where

doc : Nat � I*

add1 : (n : Nat) � doc n =I* doc n+1

We can’t help but have inverses, so the solution is to make sure that the inverses only exist in situations where they
are actually possible. Indexing the contexts makes this possible by essentially giving “types” to the patches.

29



A Different Patch Theory

Index the contexts to characterize patch applicability:

doc 0 doc 1 doc 2 ...

add1 0 add1 1

!(add1 0)!(add1 1)

space I* : Type where

doc : Nat � I*

add1 : (n : Nat) � doc n =I* doc n+1

We can’t help but have inverses, so the solution is to make sure that the inverses only exist in situations where they
are actually possible. Indexing the contexts makes this possible by essentially giving “types” to the patches.

29



Interpretation

How do we interpret this? Obvious idea:

I* doc 0 doc 1 doc 2 ...
add1 0 add1 1

Set

I

Nat Nat Nat ...
ua (λn.n+1) ua (λn.n+1)

But λn.n+1 isn’t a Bijection Nat Nat.

Now let’s build the interpretation. The obvious thing to do is to send each doc n to Nat, but this doesn’t work because
λn.n+1 isn’t a bijection between Nat and itself! (Indeed, it isn’t invertible, which was the problem in the first place.)

30



Interpretation

Fix: interpret doc n as the singleton type of n.

I* doc 0 doc 1 doc 2 ...
add1 0 add1 1

Set

I

S(0) S(1) S(2) ...
ua ... ua ...

where S(n) = Σm:Nat.m=n

S(n) is essentially the type of numbers equal to n. (Technically, it is any number, with a proof it is equal to n.) λn.n+1
is a bijection when restricted to a singleton, as is any map.

31



What Else?

32



What Else?

I More on interpreting non-invertible patches.
I Fancier patch theories, with fancier patch laws.
I Defining patch optimizers.
I Defining merging.

Expanded version of paper with more exposition:
http://tinyurl.com/icfp-htpt

We recommend that you read the expanded version of the paper, available on the authors’ websites (and at this link),
which has an addendum with some additional exposition.

33

http://tinyurl.com/icfp-htpt


Computation vs. Homotopy

There’s a tension between:

equating terms
by identifications

doc 0 =I* doc 1

distinguishing them
by computations

doc 0 7→ S(0)

doc 1 7→ S(1)

The last point I’d like to bring up is that these additional identifications seem counter to the idea of computation, in
the sense that we still wish to tell apart the different repositories.

34



Computation vs. Homotopy

Analogy: function extensionality already equates
bubble sort and quicksort.

They are the same function but different programs.

Computation is finer-grained than equality.

When we have function extensionality, we equate, for example, bubble sort and quicksort as functions, but they
compute very differently on the same list. As logicians we want to equate the functions, but as computer scientists we
want to distinguish the programs. Indeed, there’s already a trend (OTT, internalizing parametricity, etc.) of extending
the syntax of type theory with additional semantic equations.

35



Thanks!

Any questions?
36



Interpreting Patch Theory

There are other ways to interpret R.

R Set
I

add1

num

ua not

Bool

I num = Bool

ap I add1 = ua not

37



Interpreting Patch Theory

The Bool interpretation satisfies additional laws.
(ap I (add1 ◦ add1) = λn.n)

Int is the complete interpretation, because

The fundamental group of the circle is Int.

In a sense, this means that the Int interpretation doesn’t validate any extra laws: it’s the free model of the theory.
38


	Functorial Semantics
	Homotopy Type Theory
	Patch Theory
	Now It Gets Tricky…
	What Else?

