
Cartesian Cubical Computational Type Theory:
Constructive Reasoning with Paths and Equalities

Carlo Angiuli1 Favonia2 Robert Harper1

1Carnegie Mellon University

2University of Minnesota

CSL 2018

1

Equality and dependency

This work is about equality in dependent type theory.

A general-purpose constructive logic and programming language
used in many proof assistants. (Coq, Agda, Lean, Nuprl . . .)

The goal of my talk is to explain the long title.

2

Equality and dependency

This work is about equality in dependent type theory.

A general-purpose constructive logic and programming language
used in many proof assistants. (Coq, Agda, Lean, Nuprl . . .)

The goal of my talk is to explain the long title.

2

Equality and dependency

Types are indexed by (dependent on) terms.

List A n type of lists of length n

(n : nat)→ List A n dependent function type

append : (n1, n2 : nat)→ ListA n1 → ListA n2 → ListA (n1+n2)

If ` : List A (1 + 1),

I ` : List A 2?

3

I “coe(1+1=2)(`)” : List A 2?

7

If you concatenate two lists of length one, is the result directly a list of length two?

3

Equality and dependency

Types are indexed by (dependent on) terms.

List A n type of lists of length n

(n : nat)→ List A n dependent function type

append : (n1, n2 : nat)→ ListA n1 → ListA n2 → ListA (n1+n2)

If ` : List A (1 + 1),

I ` : List A 2?

3

I “coe(1+1=2)(`)” : List A 2?

7

If you concatenate two lists of length one, is the result directly a list of length two?

3

Equality and dependency

Types are indexed by (dependent on) terms.

List A n type of lists of length n

(n : nat)→ List A n dependent function type

append : (n1, n2 : nat)→ ListA n1 → ListA n2 → ListA (n1+n2)

If ` : List A (1 + 1),

I ` : List A 2? 3

I “coe(1+1=2)(`)” : List A 2? 7

If you concatenate two lists of length one, is the result directly a list of length two?

3

Extensional type theory

Two main variations on type/term equality.

In extensional type theory, EqA(a1, a2):

I Rewriting along equalities is silent (no coe).

I Equality of functions is extensional:
Eqnat→nat→nat((λn1, n2.n1 + n2), (λn1, n2.n2 + n1))

4

Intensional type theory

Intensional type theory has two notions of equality:

I Definitional equality (a1 ≡ a2 : A) is
syntactic (αβ(η)) and silent.

I Intensional identity (IdA(a1, a2)) requires explicit coercions.

5

Intensional type theory

IdA(a1, a2) doesn’t interact properly with type formers:

I Not extensional for functions: can’t prove
Idnat→nat→nat((λn1, n2.n1 + n2), (λn1, n2.n2 + n1)).

I Identity of identities is not trivial: can’t prove
Id(IdA(a1,a2))(p1, p2).

Make lemonade from these lemons: add non-trivial identities paths.

Homotopy type theory leverages the latter property of the Id type.

6

Intensional type theory

IdA(a1, a2) doesn’t interact properly with type formers:

I Not extensional for functions: can’t prove
Idnat→nat→nat((λn1, n2.n1 + n2), (λn1, n2.n2 + n1)).

I Identity of identities is not trivial: can’t prove
Id(IdA(a1,a2))(p1, p2).

Make lemonade from these lemons: add non-trivial identities paths.

Homotopy type theory leverages the latter property of the Id type.

6

Homotopy type theory

Higher inductive types with path generators.

S1 : U
base : S1

loop : IdS1(base,base)

loop2 : IdS1(base,base)

loop−1 : IdS1(base,base)

...

loop

base

Synthetic treatment of homotopy groups, cohomology, . . .

7

Homotopy type theory

Higher inductive types with path generators.

S1 : U
base : S1

loop : IdS1(base,base)

loop2 : IdS1(base,base)

loop−1 : IdS1(base,base)

...

loop

base

Synthetic treatment of homotopy groups, cohomology, . . .

7

Homotopy type theory

Univalence: A,B homotopy-equivalent ⇐⇒ IdU (A,B).
Makes “mathematics up to isomorphism” fully precise.

bool→ A ' A×A

f 〈f true, f false〉iso

〈f false, f true〉iso′

` : List (bool→ A) n =⇒ “coeiso(`)” : List (A×A) n

Coercions across univalence can’t be silent, because isomorphic types have different elements. Neither can one avoid
specifying a particular isomorphism, because different ones induce different coercions.

8

Homotopy type theory

Univalence: A,B homotopy-equivalent ⇐⇒ IdU (A,B).
Makes “mathematics up to isomorphism” fully precise.

bool→ A ' A×A

f 〈f true, f false〉iso

〈f false, f true〉iso′

` : List (bool→ A) n =⇒ “coeiso(`)” : List (A×A) n

Coercions across univalence can’t be silent, because isomorphic types have different elements. Neither can one avoid
specifying a particular isomorphism, because different ones induce different coercions.

8

Homotopy type theory

Univalence: A,B homotopy-equivalent ⇐⇒ IdU (A,B).
Makes “mathematics up to isomorphism” fully precise.

bool→ A ' A×A

f 〈f true, f false〉iso

〈f false, f true〉iso′

` : List (bool→ A) n =⇒ “coeiso(`)” : List (A×A) n

Coercions across univalence can’t be silent, because isomorphic types have different elements. Neither can one avoid
specifying a particular isomorphism, because different ones induce different coercions.

8

Constructivity?

Univalence/HITs added as axioms without computational meaning.

“coeiso(`)” : List (A×A) n doesn’t compute to a list of pairs.

Definition (Canonicity)

If · `M : bool, then M computes to (and is silently equal to)
either true or false.

9

Constructivity?

Univalence/HITs added as axioms without computational meaning.

“coeiso(`)” : List (A×A) n doesn’t compute to a list of pairs.

Definition (Canonicity)

If · `M : bool, then M computes to (and is silently equal to)
either true or false.

9

Contributions

Type theory with univalence/HITs and also canonicity!

I Second such type theory. (Cohen et al., 2016)

I Novel (“Cartesian cubical”) method.

Has both silent, extensional equality (EqA(a1, a2)) and
non-silent paths (PathA(a1, a2)) mediating univalence/HITs.

I First “two-level” type theory with canonicity.

I Which equalities can or cannot be silent?

10

Computational type theory

11

Computational type theory

Inspired by Nuprl, we build our type theory around a
PER semantics in which proofs are programs.

I Constructive mathematics and computer programming
(Martin-Löf, 1979)

I A non-type-theoretic definition of Martin-Löf’s types
(Allen, 1987)

I Logical relations (Tait, 1967), . . .

These ideas have cropped up in many different guises, but our development is closest to Martin-Löf’s meaning
explanations, and to Allen’s PER semantics.

12

Computational type theory

Untyped syntax; operational semantics on closed terms.

M := (a : A)→ B | λa.M | app(M,N)

| (a:A)×B | 〈M,N〉 | fst(M) | snd(M)

| bool | true | false | if b.A(M ;T, F) | · · ·

bool val true val false val

M 7−→M ′

if b.A(M ;T, F) 7−→ if b.A(M ′;T, F)

if b.A(true;T, F) 7−→ T if b.A(false;T, F) 7−→ F
· · ·

13

Booleans

Types classify (closed) programs according to their behaviors.

Definition

I M ∈ bool if M 7−→∗ true or M 7−→∗ false.

I M
.
=N ∈ bool if M,N 7−→∗ true or M,N 7−→∗ false.

Types are partial equivalence relations closed under evaluation.

Canonicity is true by construction!

Notice that canonicity holds by definition. The hard part is making sure that all the constructs of our type theory
have computational meaning; true and false trivially do.

14

Booleans

Types classify (closed) programs according to their behaviors.

Definition

I M ∈ bool if M 7−→∗ true or M 7−→∗ false.

I M
.
=N ∈ bool if M,N 7−→∗ true or M,N 7−→∗ false.

Types are partial equivalence relations closed under evaluation.

Canonicity is true by construction!

Notice that canonicity holds by definition. The hard part is making sure that all the constructs of our type theory
have computational meaning; true and false trivially do.

14

Functions

Open terms are regarded as functions (via substitution).

Definition
λa.M ∈ A→ B when for any N1

.
=N2 ∈ A,

M [N1/a]
.
=M [N2/a] ∈ B.

Functions map silently equal arguments to silently equal results.

15

Paths?

How do functions act on paths (non-silent equalities)?

Given F ∈ A→ B and P ∈ PathA(M,N):

A B

M N

F M F N
P F P??

F

F P does not make type sense, because P is a path, not an element of A.

16

Paths?

How do functions act on paths (non-silent equalities)?

Given F ∈ A→ B and P ∈ PathA(M,N):

A B

M N F M F N

P F P??

F

F P does not make type sense, because P is a path, not an element of A.

16

Paths?

How do functions act on paths (non-silent equalities)?

Given F ∈ A→ B and P ∈ PathA(M,N):

A B

M N F M F N
P

F P??

F

F P does not make type sense, because P is a path, not an element of A.

16

Paths?

How do functions act on paths (non-silent equalities)?

Given F ∈ A→ B and P ∈ PathA(M,N):

A B

M N F M F N
P F P??F

F P does not make type sense, because P is a path, not an element of A.

16

Interval variables

Represent P with formal dependence on interval variable x.

M = P (0) P (1) = N
P (x)

F P makes sense since we can weaken F by x.

(F P)〈0/x〉 (F P)〈1/x〉F P

17

Interval variables

Represent P with formal dependence on interval variable x.

M = P (0) P (1) = N
P (x)

F P makes sense since we can weaken F by x.

F P 〈0/x〉 F P 〈1/x〉F P

17

Interval variables

Represent P with formal dependence on interval variable x.

M = P (0) P (1) = N
P (x)

F P makes sense since we can weaken F by x.

F M F N
F P

17

Interval variables

Add primitive paths for HITs and univalence (E ∈ A ' B).

base base
loopx

A B
Vx(A,B,E)

...

Terms can depend on an arbitrary number of interval variables.

18

Interval variables

If M(x, y), then:

I Can degenerate M by weakening by z.

I Can compute faces by instantiating x, y at 0, 1.

I Can compute the diagonal by contracting x and y.

x

y

•

•

•

•

M〈0/x〉

〈0/y〉 = M〈0/y〉〈0/x〉

These interval variables induce cubical structure.

19

Interval variables

If M(x, y), then:

I Can degenerate M by weakening by z.

I Can compute faces by instantiating x, y at 0, 1.

I Can compute the diagonal by contracting x and y.

x

y

•

•

•

•

M〈0/x〉

〈0/y〉 = M〈0/y〉〈0/x〉

These interval variables induce cubical structure.

19

Interval variables

If M(x, y), then:

I Can degenerate M by weakening by z.

I Can compute faces by instantiating x, y at 0, 1.

I Can compute the diagonal by contracting x and y.

x

y

•

•

•

•

M〈0/x〉

〈0/y〉 =

M〈0/y〉

〈0/x〉

These interval variables induce cubical structure.

19

Interval variables

If M(x, y), then:

I Can degenerate M by weakening by z.

I Can compute faces by instantiating x, y at 0, 1.

I Can compute the diagonal by contracting x and y.

x

y

•

•

•

•

M〈0/x〉〈0/y〉 = M〈0/y〉〈0/x〉

These interval variables induce cubical structure.

19

Interval variables

If M(x, y), then:

I Can degenerate M by weakening by z.

I Can compute faces by instantiating x, y at 0, 1.

I Can compute the diagonal by contracting x and y.

x

y

•

•

•

•

M〈0/x〉〈0/y〉 = M〈0/y〉〈0/x〉

These interval variables induce cubical structure.

19

Now you’re computing with cubes!

20

Cubical operational semantics

Extend syntax; allow evaluating terms with free interval variables.

r := 0 | 1 | x
M := · · · | base | loopr | · · ·

loop0
.
=

base base

.
= loop1

loopx

base val loopx val

loop0 7−→ base loop1 7−→ base

21

Cubical operational semantics

Extend syntax; allow evaluating terms with free interval variables.

r := 0 | 1 | x
M := · · · | base | loopr | · · ·

loop0
.
= base base

.
= loop1

loopx

base val loopx val loop0 7−→ base loop1 7−→ base

21

Cubical PERs

Every type now has a PER of n-dimensional elements at each n:

M
.
=N ∈ A [x1, . . . , xn]

22

Cubical PERs

Presheaf over finite-product category generated by 1⇒ I.

Hence, Cartesian cubical type theory.

{M |M ∈ A [x, y]}

{M |M ∈ A [x]}

{M |M ∈ A [·]}

〈0/x〉 〈1/x〉

〈0/y〉 〈x/y〉 · · ·
Must be closed under both eval-
uation and reindexing, and these
must commute (up to

.
=).

23

Cubical PERs

Presheaf over finite-product category generated by 1⇒ I.

Hence, Cartesian cubical type theory.

{M |M ∈ A [x, y]}

{M |M ∈ A [x]}

{M |M ∈ A [·]}

〈0/x〉 〈1/x〉

〈0/y〉 〈x/y〉 · · ·

Must be closed under both eval-
uation and reindexing, and these
must commute (up to

.
=).

23

Cubical PERs

Presheaf over finite-product category generated by 1⇒ I.

Hence, Cartesian cubical type theory.

{M |M ∈ A [x, y]}

{M |M ∈ A [x]}

{M |M ∈ A [·]}

〈0/x〉 〈1/x〉

〈0/y〉 〈x/y〉 · · ·
Must be closed under both eval-
uation and reindexing, and these
must commute (up to

.
=).

23

Paths

Elements of path type are functions out of the interval.

P ∈ A [Ψ, x]

〈x〉P ∈ PathA(P 〈0/x〉, P 〈1/x〉) [Ψ]

M ∈ PathA(P0, P1) [Ψ]

M@r ∈ A [Ψ]

24

Coercion

Respect for paths is implemented by a coercion operator.

A type [Ψ, x]
M ∈ A〈r/x〉 [Ψ]

coer r′
x.A (M) ∈ A〈r′/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

25

Coercion

Respect for paths is implemented by a coercion operator.

A type [Ψ, x]
M ∈ A〈r/x〉 [Ψ]

coer r′
x.A (M) ∈ A〈r′/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

25

Coercion

Respect for paths is implemented by a coercion operator.

A type [Ψ, x]
M ∈ A〈r/x〉 [Ψ]

coer r′
x.A (M) ∈ A〈r′/x〉 [Ψ]

A〈0/x〉 A〈1/x〉
A

M

∈

coe0 1
x.A (M)

∈

coe0 x
x.A (M)

∈

25

Coercion

List (bool→ A) n List (A×A) n

`

∈

List Vx(. . . , iso) n

coe0 1
x.List Vx(...,iso) n(`)

∈

26

Coercion

List (bool→ A) n List (A×A) n

`

∈

List Vx(. . . , iso) n

coe0 1
x.List Vx(...,iso) n(`)

∈

26

Coercion

But exact equality doesn’t respect paths!

EqU (A,A) EqU (A,B)

refl

∈

EqU (A,Vx(A,B, iso))

??
∈

We must stratify types into two levels:

I Kan types (with coercion), and

I pretypes (without coercion).

27

Coercion

But exact equality doesn’t respect paths!

EqU (A,A) EqU (A,B)

refl

∈

EqU (A,Vx(A,B, iso))

??
∈

We must stratify types into two levels:

I Kan types (with coercion), and

I pretypes (without coercion).

27

Kan composition

To implement coercion at every type, we also need:

zy

x ·

·

·

·

·

·

·

·

0

1

0

1

z

1

28

Kan composition

To implement coercion at every type, we also need:

zy

x ·

·

·

·

·

·

·

·

0

1

0

1

z

1

28

Kan composition

To implement coercion at every type, we also need:

zy

x ·

·

·

·

·

·

·

·

0

1

0

1

z

1

28

Kan composition

To implement coercion at every type, we also need:

zy

x ·

·

·

·

·

·

·

·

0

1

0

1

z

1

28

Kan composition

To implement coercion at every type, we also need:

zy

x ·

·

·

·

·

·

·

·

0

1

0

1

z

1

28

Kan composition

To implement coercion at every type, we also need:

zy

x ·

·

·

·

·

·

·

·

0

1

0

1

z

1

28

Kan composition in U

Compositions of types must be a new type-former.

What are its elements? How do you coerce and compose in it?

?? ∈

· ·

· ·

B

A C

29

Conclusion

Cartesian Cubical Computational Type Theory:
Constructive Reasoning with Paths and Equalities

30

De Morgan cubical type theory

Cubical Type Theory: a constructive interpretation of the
univalence axiom (Cohen, Coquand, Huber, Mörtberg, 2016)

More cubical structure and less Kan structure.

a

b

b

b

p〈x ∨ y/x〉p

p
a

a

a

b

p〈x ∧ y/x〉 p

p

b a
p〈1− x/x〉

31

Two-level type theory

Homotopy Type System (HTS) of Voevodsky (2013).

Want to internally define type-valued presheaves, but
functoriality-up-to-paths requires infinite coherence data.

We have defined semi-simplicial types in RedPRL!

32

Implementations

Two prototype tactic-based proof assistants: RedPRL and redtt.

I Developed by Sterling, Favonia, Angiuli, Cavallo, et al.

I Open-source, available on github.com/RedPRL.

I RedPRL: à la Nuprl, direct reasoning about untyped terms.

I redtt: typed core language of proofs.

Thanks!

33

github.com/RedPRL

	Computational type theory
	Now you're computing with cubes!

