
Automatically Splitting a Two-Stage Lambda
Calculus

Nicolas Feltman, Carlo Angiuli, Umut A. Acar, and Kayvon Fatahalian

Carnegie Mellon University

Abstract. Staged programming languages assign a stage to each pro-
gram expression and evaluate each expression in its assigned stage. A
common use of staged languages is to describe programs where inputs
arrive at different times or rates. In this paper we present an algorithm for
statically splitting these mixed-staged programs into two unstaged, but
dependent, programs where the outputs of the first program can be effi-
ciently reused across multiple invocations of the second. While previous
algorithms for performing this transformation (also called pass separation
and data specialization) were limited to operate on simpler, imperative
languages, we define a splitting algorithm for an explicitly-two-stage,
typed lambda calculus λ12 with a © modality denoting computation at
a later stage, and a ∇ modality noting purely first-stage code. Most no-
tably, the algorithm splits mixed-stage recursive and higher-order func-
tions. We prove the dynamic correctness of our splitting algorithm with
respect to a partial-evaluation semantics, and mechanize this proof in
Twelf. We also implement the algorithm in a prototype compiler, and
demonstrate that the ability to split programs in a language featuring
recursion and higher-order features enables non-trivial algorithmic trans-
formations that improve code efficiency and also facilitates modular ex-
pression of staged programs.

1 Introduction

Consider a function F which, given x, y1, . . . , ym, computes fpx, yiq for each yi:
fun F px, y1, y2 . . . , ymq =
fpx, y1q; fpx, y2q; . . . ; fpx, ymq

Observe that this implementation would be wasteful if fpx, yiq does a significant
amount of work that does not depend on yi. In such a case, it would be advan-
tageous to find the computations in f that depend only on x and then stage
execution of f so they are performed only once at the beginning of F .

Jørring and Scherlis classify automatic program staging transformations,
such as the one described above, as forms of frequency reduction or precom-
putation [15]. To perform frequency reduction, one identifies and hoists compu-
tations that are performed multiple times, in order to compute them only once.
To perform precomputation, one identifies computations that can be performed
in advance and does so—for example, at compile time if the relevant inputs are
statically known.

datatype list = Empty
| Cons of int * list

fun part (p, Empty) =(0,Empty,Empty)
| part (p, Cons (h,t)) =

let val (n,le,ri) = part (p,t)
in if h < p

then (n+1,Cons(h,le),ri)
else (n,le,Cons(h,ri))

qsel: list * int -> int
fun qsel (Empty, k) = 0

| qsel (Cons ht, k) =
let val (i,le,ri) = part ht in
case compare k i of

LT => qsel (le, k)
| EQ => #1 ht
| GT => qsel (ri, k-i-1)

(a) Unstaged quickselect.

@gr{
datatype list = Empty

| Cons of int * list
fun part (p, Empty) = ...
}

qss : ∇list * ©int -> ©int
fun qss (gr{Empty},_) = next {0}

| qss (gr{Cons ht},next{k}) =
let

@gr{val (i0,le,ri) = part ht}
val next{i} = hold gr{i0}

in next{
case compare k i of

LT => prev {
qss (gr{le}, next{k})}

| EQ => prev {hold gr{#1 ht}}
| GT => prev {

qss (gr{ri}, next{k-i-1})}
}

(b) Staged quickselect in λ12.

Fig. 1: Quickselect: traditional and staged.

One common precomputation technique is partial evaluation [9,13], which
relies on dynamic compilation to specialize functions to known argument values.
Going back to our example, if f specializes to a particular v, written fv, such
that fpv, yq “ fvpyq, then F can be specialized to v as
fun Fvpy1, y2, . . . , ymq =
fvpy1q; fvpy2q; . . . ; fvpymq.

This eliminates the need to compute m times those parts of fpv,´q which do
not depend on the second argument.

Closely related to partial evaluation is metaprogramming, where known values
represent program code to be executed in a later stage [4,31,5,22]. Metaprogram-
ming enables fine-grained control over specialization by requiring explicit staging
annotations that mark the stage of each expression.

While simple forms of frequency reduction include standard compiler opti-
mizations such as loop hoisting and common subexpression elimination, Jør-
ring and Scherlis proposed the more general transformation of splitting a pro-
gram into multiple subfunctions (called pass separation in [15]). In our exam-
ple, splitting transforms the function f into two others f1 and f2 such that
fpx, yiq “ f2pf1pxq, yiq. Then we evaluate F by evaluating f1 on x, and using
the result z to evaluate the second function on each yi.
fun Fmultipasspx, y1, y2, . . . , ymq =

let z “ f1pxq in f2pz, y1q; f2pz, y2q; . . . ; f2pz, ymq

The key difference between splitting and partial evaluation (or metaprogram-
ming) is that the former can be performed without access to the first argument
x; Fmultipass works for any x, while Fv is defined only for x “ v. Therefore, unlike
partial evaluation, splitting is a static program transformation (“metastatic” in
partial evaluation terminology) and does not require dynamic code generation.

Prior work on partial evaluation and metaprogramming has demonstrated
automatic application of these techniques on higher order functional languages.
In contrast, automatic splitting transformations have been limited to simpler
languages [17,24,8,11].

In this paper, we present a splitting algorithm for λ12, a two-staged typed
lambda calculus in the style of Davies [4], with support for recursion and first-
class functions. Like Davies, λ12 uses a© modality to denote computation in the
second stage, but to aid splitting we also add a ∇ modality to denote purely first-
stage computations. The dynamic semantics (Section 3) of λ12 are that of Davies,
modified to provide an eager behavior between stages, which we believe is more
intuitive in the context of splitting. We then prove the correctness of our splitting
algorithm (Section 4) for λ12 with respect to the semantics. Finally, we discuss
our implementation of this splitting algorithm (Section 5) and demonstrate its
power and behavior for a number of staged programs ranging from straight-line
arithmetic operations to recursive and higher-order functions (Section 6).

We also demonstrate that splitting a recursive mixed-stage f yields an f1
which computes a recursive data structure and an f2 which traverses that struc-
ture in light of information available at the second stage. In the case of the
quickselect algorithm, which we discuss next, the split code executes asymptot-
ically faster than an unstaged evaluation of f .

2 Overview

Suppose that we wish to perform a series of order statistics queries on a list l.
To this end, we can use the quickselect algorithm [12], which given a list l and
an integer k, returns the element of l with rank k (i.e. the kth-largest element).
As implemented in an ML-like language in Figure 1(a), qs partitions l using
the first element as a pivot and then recurs on one of the two resulting sides,
depending on the relationship of k to the size i of the first half, in order to find
the desired element. If the index is out of range, a default value of 0 is returned.
Assuming that the input list, with size n, is uniformly randomly ordered (which
can be achieved by pre-permuting it), qs runs in expected Θpnq time. Using
qs, we can perform m different order statistics queries with ranks k1, . . . , km as
follows:
(qs l k1, qs l k2, ..., qs l km)

Unfortunately, this approach requires Θpn ¨mq time.
We can attempt to improve on this algorithm by factoring out computations

shared between these calls to qs. In particular, we can construct a binary search
tree out of l, at cost Θpn log nq, and then simply look for the kth leftmost
element of that tree. Doing lookups efficiently, in Θplog nq time, requires one

more innovation—augmenting the tree by storing at each node the size of its left
subtree. Thus in total this approach has expected runtime Θpn log n`m log nq.

Is this method, wherein we precompute a data structure, better than the
direct Θpmnq method? The answer depends on the relationship between the
number of lookups m and the size of the list n. If m is constant, then the di-
rect method is superior for sufficiently large n. This is because the precomputed
method does unnecessary work sorting parts of the list where there are no query
points. However, if the number of queries grows with the size of the list, specfi-
cially in ωplog nq, then the precomputed method will be asymptotically faster.

Rewriting algorithms in this way—to precompute some intermediate results
that depend on constant (or infrequently-varying) inputs—is non-trivial, as it
requires implementing more complex data structures and algorithms. In this pa-
per, we present a splitting algorithm which does much of this task automatically.

2.1 Staging

The idea behind staged programming is to use staging annotations—in our case,
guided by types—to indicate the stage of each subterm.

In Figure 1(b) we show a staged version of qs, called qss, where first-stage
code is colored red, and second-stage blue. In qss, we regard the input list l
as arriving in the first stage (with type ∇list, a list “now”), the input rank k as
arriving in the second stage (with type©int, an integer in the “future”), and the
result as being produced in the second stage (with type ©int).

qss is obtained from qs by wrapping certain computations with prev and
next, signaling transitions between first- and second-stage code. Additionally, gr
(ground) annotations mark certain first-stage components as being purely first-
stage, rather than mixed-stage. We also use a function hold : ∇int -> ©int,
to promote first-stage integers to second-stage integers. Our type system ensures
that the staging annotations in qss are consistent, in the sense that computations
marked as first-stage cannot depend on ones marked as second-stage.

The process of automatically adding staging annotations to unstaged code,
called binding time analysis, has been the subject of extensive research (Sec-
tion 7). In this paper, we do not consider this problem, instead assuming that
the annotations already exist. In the case of qss, we have specifically chosen
annotations which maximize the work performed in the first stage.

2.2 Splitting Staged Programs

In the rest of this section, we present a high-level overview of the main ideas
behind our splitting algorithm, applied to qss. Splitting qss yields a two-part
program that creates a probabilistically balanced, augmented binary search tree
as an intermediate data structure. In particular, its first part (qs1) constructs
such a binary search tree and its second part (qs2) traverses the tree, using the
embedded size information to find the element of the desired rank. The code for
qs1 and qs2 is in Figure 2.

datatype tree = Leaf
| Branch of int * int * tree * tree

datatype list = Empty
| Cons of int * list

fun part (p : int, l : list) = ...

fun qs1 (l : list) : tree =
case l of

Empty => Leaf
| Cons ht =>

let val (i,le,ri) = part ht in
Branch (i,#1 ht,qs1 le,qs1 ri)

fun qs2 (p : tree, k : int) :int=
case p of

Leaf => 0
| Branch (i,h,p1,p2) =>

case compare k i of
LT => qs2 (p1,k)

| EQ => h
| GT => qs2 (p2,k-i-1)

Fig. 2: Two-pass implementation of quickselect.

Our splitting algorithm scans qss for first-stage computations, gathering
them into qs1. Given l, this function performs these computations and places
the information needed by the subsequent function into a boundary data struc-
ture. In particular, qs1 performs all recursive calls and evaluates all instances of
part (since it depends only on l). It produces a boundary data structure that
collects the results from these recursive calls, tagged by the branch (LT, EQ, or
GT) in which that call occurred. Since the recursive calls occur in two different
branches (LT and GT) the boundary structure is a binary tree. Lastly, it records i
(the size of the left subtree) and #1 ht (the pivot/head of the list) in the bound-
ary structure, because those computations are held for use in the second stage.
The final result is a binary search tree augmented with size information, and
whose keys are the pivots.

Our splitting algorithm simultaneously scans qss for second-stage computa-
tions, gathering them into qs2. This function is given the boundary data struc-
ture and the rank k, and it finishes the computation. Now that k is known, the
conditional on compare k i can be evaluated, choosing which recursive call of
qss is actually relevant for this k. Since the boundary data structure contains
the first-stage data for all of the recursive calls, performing these comparisons
essentially walks the tree, using the rank along with the size data i to look up
the kth leftmost node in the tree.

3 λ12 Statics and Dynamics

We express two-stage programs as terms in λ12, a typed, modal lambda calculus.
Although λ12 describes computations that occur in two stages, we find it helpful
for the specification of splitting to codify terms using one of three worlds. A world
is essentially a slightly finer classification than a stage. Whereas there is only one
world, 2, for second-stage computations, there are two worlds corresponding to
the first stage: 1M for mixed first-stage computations, which may contain second-
stage subterms within next blocks, and 1G for ground first-stage computations,

Worlds w ::“1M | 1G | 2

{1M,2}-Types τ ::“ unit | τ ˆ τ | τ Ñ τ | α | µα.τ | τ ` τ

τM ::“ unit | τM ˆ τM | τM Ñ τM | α | µα.τM | © τ | ∇τ
Contexts Γ ::“ ‚ | Γ, xw : τw @ w

Terms ew ::“ app(ew;ew) | <ew, ew> | pi1(ew) | pi2(ew)

| inl(ew) | inr(ew) | case(ew;x.ew;x.ew)

| roll(ew) | unroll(ew)

eM ::“ v | next(e2) | gr(eG) | letg(eM;xG.eM)

| caseg(eM;xM.eM;xM.eM)

eG ::“u

e2 ::“ q | prev(eM) | fn(x2.x2.e2)

Partial Values v ::“xM | <> | fn(xM.xM.eM) | <v, v> | roll(v)

| inl(v) | inr(v) | next(y) | gr(v)

Ground Values u ::“xG | <> | fn(xG.xG.eG) | <u, u> | roll(u) | inl(u) | inr(u)

Residuals q ::“x2 | <> | fn(x2.x2.q) | app(q;q) | <q, q> | pi1(q) | pi2(q)

| roll(q) | unroll(q) | inl(q) | inr(q) | case(q;x2.q;x2.q)

Fig. 3: λ12 abstract syntax. Subscript-w rules apply at all worlds.

which may not. The distinction between these two first-stage worlds is necessary
for the splitting algorithm to produce efficient outputs and will be discussed in
Section 4.6.

The abstract syntax of λ12 is presented as a grammar in Figure 3. To simplify
the upcoming translation in Section 4, we have chosen to statically distinguish
between values and general computations, using an underline constructor (“v”)
which explicitly note the parts of a computation that have been reduced to a
value.1 Moreover, the value/computation distinction interacts non-trivially with
the three possible world classifications. As a result, we end up with six classes
of term in the grammar.

The key feature of all three forms of value is that they have no remaining
work in the first stage. That is, all of the first-stage portions of a value are fully
reduced (except the bodies of first-stage functions). In the case of values at 1G,
which we call ground values, this collapses to just the standard notion of values
in a monostage language. In the case of values at 2, which we call residuals, this
collapses to just standard monostage terms. Lastly, values at 1M end up with
more of a mixed character, so we call them partial values.

1 In this presentation, the value/computation distinction is encoded intrinsically at
the syntactic level. However, we found it more convenient in the formal Twelf im-
plementation to maintain the distinction with an extrinsic judgement.

Γ $ v :A@w

Γ $ v :A@w
¨

Γ $ <> :unit@w

Γ, f :AÑ B@w, x :A@w $ e :B@w

Γ $ fn(f.x.e) :AÑ B@w

Γ $ e1 :AÑ B@w Γ $ e2 :A@w

Γ $ app(e1;e2) :B@w

Γ $ e1 :A@w Γ $ e2 :B@w

Γ $ <e1, e2> :AˆB@w

Γ $ e :AˆB@w

Γ $ pi1(e) :A@w

Γ $ e :AˆB@w

Γ $ pi2(e) :B@w

Γ $ e :µα.τ@w

Γ $ unroll(e) : rµα.τ{αsτ@w

Γ $ e :A@w

Γ $ inl(e) :A`B@w

Γ $ e :B@w

Γ $ inr(e) :A`B@w

Γ $ e : rµα.τ{αsτ@w

Γ $ roll(e) :µα.τ@w

Γ $ e1 :A`B@w Γ, x2 :A@w $ e2 :C@w Γ, x3 :B@w $ e3 :C@w

Γ $ case(e1;x2.e2;x3.e3) :C@w

Γ $ e :A@2
Γ $ next(e) :©A@1M

Γ $ e :©A@1M
Γ $ prev(e) :A@2

Γ $ e :A@1G
Γ $ gr(e) :∇A@1M

Γ $ e1 :∇A@1M
Γ, x :A@1G $ e2 :B@1M

Γ $ letg(e1;x.e2) :B@1M

Γ $ e1 :∇pA`Bq@1M
Γ, x2 :∇A@1M $ e2 :C@1M
Γ, x3 :∇B@1M $ e3 :C@1M

Γ $ caseg(e1;x2.e2;x3.e3) :C@1M

Fig. 4: λ12 statics, split into standard rules and staged rules.

3.1 Statics

The typing judgment Γ $ e :A@w, defined in Figure 4, means that e has type
A at world w, in the context Γ.

All three worlds contain unit, product, function, sum and recursive types
defined in the usual fashion. These “standard” features can only be constructed
from subterms of the same world, and variables can only be used at the same
world where they were introduced. Thus differing worlds (and hence, differing
stages of computation) only interact by means of the © and ∇ type formers.
These modalities are internalizations of worlds 2 and 1G, respectively, as types
at world 1M.

At the term level, next blocks can be used to form future computations: given
a term e of type A at world 2, next(e) has type ©A at 1M. This essentially
encapsulates e as a computation that will be evaluated in the future, and it
provides a handle (of type ©A) now to that eventual value. Computations at
1M can shuffle this handle around as a value, but the future result it refers to
cannot be accessed. This is because the only way to eliminate a © wrapper is
by using a prev, which yields an A at 2. This feature was adapted from linear
temporal logic, via [4], and ensures that there can be no flow of information from
the second stage to the first.

∇A is a type in world 1M which classifies purely-first-stage computations of
type A. Given a world 1G term e of type A, gr(e) has type ∇A at world 1M.
(e is guaranteed not to contain second-stage computations because © types are
not available in world 1G.) An e of type ∇A at 1M can be unwrapped as an A
at 1G using the letg(e;x.e1) construct, which binds x :A@1G in a 1M term e1.
This allows us to compute under ∇—for example, given a p :∇pAˆBq@1M,
the term letg(p;x.gr(pi1(x))) computes its first projection, of type ∇A. This
elimination form, in contrast to that of ©, does not permit world 1M subterms
within any world 1G term.

These features are sufficient to ensure that mixed code does not leak into
ground code, however they also prevent information from ever escaping a ∇
wrapper. So to allow the latter behavior but not the former, we introduce the
caseg(e;x.e1;x.e2) construct, whose predicate is of type ∇pA`Bq and whose
branches are world 1M terms open on ∇A and ∇B respectively. This essentially
allows code at 1M to inspect an injection tag within a ∇.

Although products and functions are restricted to types at the same world,
© allows construction of “mixed-stage” products and functions. For example,
qss is a function at world 1M which takes a ∇list ˆ©int (a purely-first-stage
list and a second-stage integer) to a ©int (a second-stage computation of an
integer).

The example code in this paper uses an extension of the formalized λ12. In
particular, it makes liberal use of ints and various functions on these, as well as
a function hold() which takes a ∇int to a ©int.2

3.2 Dynamics

The central tenet of a staged language is that first-stage code should be evaluated
entirely before second-stage code. Accordingly, our dynamics operates in two
passes. The first pass takes an input top-level program e :A@2 and reduces all
of its first-stage (worlds 1M and 1G) subterms in place, eventually resulting in a
residual q. The second pass further reduces this residual. Since q is monostage by
definition, this second pass is standard unstaged evaluation and is not described
in further detail in this paper. Moreover, for the purposes of these dynamics, we
consider a top level program to always be typed at world 2.

Since e :A@2 may be constructed out of terms at other worlds, our dynamics
requires notions of values and steps that are specialized to each world. The rules
for all parts of first-pass evaluation are given in Figure 5. In this and later figures,
we extensively use an Sr-s construction to indicate a shallow evaluation context
which looks a single level deep.

World 2. Steps at world 2 are given by the judgment e 2
ãÑ e1. Since first pass

evaluation should not reduce stage two terms, this judgment does nothing but
2 hold() is definable in λ12 given an inductive definition of ints. In practice, we provide
both ints and hold() as primitives. It is sensible to extend hold() to all base types
and to products and sums thereof. This is related to the notion of mobility ([21]).

Shallow Reductions, e w
á e1

e e1 w

<v1, v2> <v1, v2> all
pi1(<v1, v2>) v1 1G,1M
pi2(<v1, v2>) v2 1G,1M
pi1(v) pi1(v) 2

pi2(v) pi2(v) 2

app(fn(f.x.e);v) rfn(f.x.e), v{f, xse 1G,1M
app(v1;v2) app(v1;v2) 2

inl(v) inl(v) all
inr(v) inr(v) all
case(inl(v);x2.e2;¨) rv{x2se2 1G,1M
case(inr(v);¨;x3.e3) rv{x3se3 1G,1M
roll(v) roll(v) all
unroll(roll(v)) v 1G,1M
unroll(v) unroll(v) 2

case(e1;x2.e2;x3.e3) case(e1;x2.e2;x3.e3) 2

next(y) next(y) 1M

prev(next(y)) y 2

gr(v) gr(v) 1M

letg(gr(v);x.e) rv{xse 1M

caseg(gr(inl(v));x2.e2;¨) rgr(v){x2se2 1M

caseg(gr(inr(v));¨;x3.e3) rgr(v){x3se3 1M

Shallow Contexts, S vcw
Sr-s w

<-, e> all
<v, -> all
pi1(-) all
pi2(-) all
fn(f.x.-) 2

app(-;e) all
app(v;-) all
inl(-) all
inr(-) all
roll(-) all
unroll(-) all
case(-;x2.e2;x3.e3) all
case(v1;x2.-;x3.e3) 2

case(v1;x2.v2;x3.-) 2

caseg(-;x2.e2;x3.e3) 1M
letg(-;x.e) 1M

e
w
á e1

e
w

ãÑ e1

e
w

ãÑ e1 S vcw

Sres w
ãÑ Sre1

s

e
1G
ãÑ e1

gr(e) 1M
ãÑ gr(e1)

e
2

ãÑ e1

next(e) 1M
ãÑ next(e1)

e
1M
ãÑ e1

prev(e) 2
ãÑ prev(e1)

q not a variable
next(q)Õ Jq{yKnext(y)

e Õ Jq{yKe1

prev(e) 2
ãÑ let(y;q.prev(e1))

e Õ Jq{yKe1 S vc1M

Sres Õ Jq{yKSre1
s

Fig. 5: First-pass evaluation of λ12 dynamics. The judgement e w
ãÑ e1 indicates

that e takes a step to e1 in the first pass; w
á and S vcw are helper judgements.

traverse e to find prev blocks, under which it performs in-place reductions. A
world 2 term is done evaluating when it has the form q, where q is a residual. To
be a residual, a term must have no first-stage subterms (equivalently, no prevs),
even within the body of a function or branches of a case. This implies that 2

ãÑ

must proceed underneath second-stage binders.

World 1G. Since the ground fragment of the language is not dependent on other
worlds, the semantics of ground is just that of a monostage language. Thus,
e
1G
ãÑ e1 traverses into subterms to find the left-most unevaluated code where it

performs a reduction. A ground value u comprises only units, injections, tuples,
and functions, where the body of the function may be any ground term.

World 1M. Like its ground counterpart, the 1M step judgment, e 1M
ãÑ e1, finds

the left-most unevaluated subterm and performs a reduction. It also descends
into gr and next blocks, using one of the other two step judgements (1GãÑ or 2

ãÑ)
there. The value form for 1M, called a partial value, comprises units, tuples,
functions, gr blocks of ground values, and next blocks containing only a stage
two variable. This strong requirement ensures that second-stage computations
are not duplicated when partial values are substituted for a variable. This is a
departure from the staged semantics of [30] and [4]. Whereas those semantics
interpret values of type©A to mean “code of type A that can be executed in the
future,” ours interprets ©A to mean “a reference to a value that will be acces-
sible in the future.” This contrast stems from differing goals: metaprogramming
explicitly intends to model code manipulating code, whereas our applications
feel more natural with an eager interpretation of next. One consequence of the
stronger requirement on partial values is that a new kind of step is necessary to
put terms into that form. To illustrate, consider:
prev{(fn x : ©int => e’) (next{e})}

We could reduce this to prev(rnext(e){xse1), but this may potentially duplicate
an expensive computation e depending on how many times x appears in e1.
Instead, we choose to hoist e outside, binding it to a temporary variable y, and
substituting that variable instead:
let val y = e in prev{[next{y}/x]e’}

This behavior is implemented by the eÕ Jq{yKe1 judgment, called a hoisting step.
We read this as saying that somewhere within e there was a subterm q which
needs to be hoisted out, yielding the new term e1 which has a new variable y
where q used to be. These steps occur when a next block has contents that are
a residual but (to prevent loops) not when those contents are already a variable.
In essence, the rules for hoisting steps operate by “bubbling up” a substitution
to the innermost containing prev, where it is reified into a let statement.3

Consider the following example, where P has type ∇punit` unitq,
caseg P of _ => next{0} | _ => next{1}

Depending on what P evaluates to in the first stage, the whole term will step to
either next{0} or next{1}. In this sense, we can see case (at world 1M) and
caseg as the constructs that facilitate all cross-stage communication.

3.3 Type Safety

The statics and dynamics of λ12 are related by the type safety theorems below,
again annotated by world. In all cases, Γ may be any list of variable bindings at
world 2, representing the second-stage binders under which we are evaluating.
Note how the progress theorem for world 1M states that every well-typed term
must take either a standard step or a hoisting step.

3 Because a program is a term at 2, this prev always exists. Otherwise, the semantics
would need a mechanism to accumulate the bindings that hoisting steps create.

Theorem 1 (Progress).
– If Γ $ e :A@1M, then either e has the form v, or e 1MãÑ e1, or eÕ Jq{yKe1.
– If Γ $ e :A@1G, then either e has the form u, or e 1GãÑ e1.
– If Γ $ e :A@2, then either e has the form q, or e 2

ãÑ e1.

Theorem 2 (Preservation).
– If Γ $ e :A@1M and eÕ Jq{yKe1,

then Γ $ q :B@2 and Γ, y :B@2 $ e1 :A@1M.
– If Γ $ e :A@w and e w

ãÑ e1, then Γ $ e1 :A@w.

3.4 Evaluating Staged Programs

Multistage functions, such as qss from Section 2, can be represented as terms
with a type fitting the pattern AÑ©pB Ñ Cq at 1M.4 To apply such a function
f to arguments a :A@1M and b :B@2, simply evaluate the program:
prev{f a} b

Moreover, the reuse of first-stage computations across multiple second-stage
computations can even be encoded within λ12. The following program runs many
order statistics queries k1, . . . , km on the same list:
prev{ let val list = gr{[7,4,2,5,9,...,3]} in
next{ let fun lookup k = prev{qss (list,next{k})}

in (lookup k1,...,lookup km)}}

Observe that this code evaluates qss only once and subsitutes its result into
the body of the function lookup, which is then called many times in the second
stage.

4 Splitting Algorithm

The goal of a stage splitting translation is to send a program P in a multistage
language to an equivalent form P 1 where the stages are seperated at the top
level. More specifically, P and P 1 should produce the same answer under their
respective semantics.

Since λ12 has three classes of multistage term, our splitting algorithm has
three forms: e 2

ù {p|l.r} for 2-terms, e 1M
ù {c|l.r} for 1M-terms, and v ô {i;q}

for partial values. In each form the output has two parts, corresponding to the
first-stage (p, c, and i) and second-stage (l.r, and q) content of the input. Note
that there’s no need to provide forms of splitting for ground terms or residuals,
since those classes of term are already monostage by construction.

The rules of the three splitting judgements are given in Figures 6 and 7. Since
the rules are simply recursive on the structure of the term, the splitting algorithm
runs in linear time on the size of the input program. Splitting is defined for all
well-typed inputs (Theorem 3), and it produces unique results (Theorem 4).
That is, each splitting judgement defines a total function.
4 We can rewrite qss in this curried form, or apply a higher-order currying function.

Theorem 3 (Splitting Totality).
– For term e, if Γ $ e :A@2, then e

2
ù {p|l.r}.

– For term e, if Γ $ e :A@1M, then e
1M
ù {c|l.r}.

– For partial value v, if Γ $ v :A@1M, then v ô {i;q}.

Theorem 4 (Splitting Uniqueness).
– If e 2

ù {p|l.r} and e 2
ù {p1|l1.r1}, then p “ p1, and l.r “ l1.r1.

– If e 1M
ù {p|l.r} and e 1M

ù {c1|l1.r1}, then c “ c1, and l.r “ l1.r1.
– If v ô {i;q} and v ô {i1;q1}, then i “ i1 and q “ q1.

We prove these theorems by straightforward induction on the typing deriva-
tion and simultaneous induction on the splitting derivations, respectively.

4.1 Outputs of Splitting

Splitting a top level program e : A@ 2, via 2
ù, yields {p|l.r}. Like e, this

output is evaluated in two passes. The first pass reduces p to the value b and
plugs this result in for l to produce rb{lsr; the second pass evaluates rb{lsr. The
relationship between the two stages in this case is thus like a pipeline, which
is why we write them with a ‘|’ in between. Since execution of the first pass
serves to generate input for the second pass, we say p is a precomputation that
produces a boundary value (b) for the resumer (l.r).

Splitting a partial value v, via ô, yields {i;q}. Since partial values, by defi-
nition, have no remaining work in the first pass and since transfer of information
between the stages occurs in the first pass of evalution, we know that the second-
stage components of v can no longer depend on its first-stage components. Anal-
ogously, this must also hold for the output of splitting, which is why q—unlike
the resumer of world 2 term splitting—is not open on a variable. Thus, i and q
are operationally independent, but they represent the complementary portions
of v that are relevant to each stage. We call i the immediate value and q the
residual.

For any e :A@ 1M, splitting e via 1M
ù yields the pair of monostage terms

{c|l.r}. This output form is essentially a hybrid of the previous two. Because e
is a term, c needs to produces a boundary value b to be passed to the resumer
(l.r) And since e types at world 1M, it has an eventual result at the first stage
as well as the second, and so it must produce an immediate value i. The term
c meets both of these responsibilities by reducing to the tuple <i, b>, and so we
call it a combined term.

4.2 World 2 Term Splitting

The dynamic correctness of the splitting translation requires that the simple
evaluate-and-plug semantics on the output produces the same answer as the
staged semantics of the previous section. That is, rb{lsr (the applied resumer)
should be equivalent to the residual q produced by direct evaluation, e 2

ãÑ ¨ ¨ ¨
2

ãÑ

q. This condition is stated more precisely as Theorem 5, where “e ó v” indicates
standard monostage reduction of the term e to the value v, and “”” indicates a
monostage equivalence, which is defined in Figure 8.

Theorem 5 (End-to-End Correctness). If ¨ $ e :A@2, e 2
ãÑ ¨ ¨ ¨

2
ãÑ q, and

e
2

ù {p|l.r}, then p ó b and rb{lsr ” q.

We prove Theorem 5 by induction on the steps of evaluation. In the base
case, where e is already a residual of the form q, we know q

2
ù {<>|_.q}, so

by uniqueness of splitting, p “ <> and r “ q. From here, we can directly derive
<> ó <> and q ” q.

In the recursive case, where the evaluation takes at least one step, we have
e

2
ãÑ e1 2

ãÑ ¨ ¨ ¨
2

ãÑ q as well as ¨ $ e :A@2 and e
2

ù {p|l.r}. By preservation
and totality of splitting, we know ¨ $ e1 :A@2 and e1 2

ù {p1|l1.r1}. From here,
the inductive hypothesis yields p1 ó b1 and rb1{l1sr1 ” q. All that we now require
is p ó b and rb{lsr ” rb1{l1sr1, To close this gap we introduce Lemma 1, which
essentially states that any single step is correct, and whose proof will concern
the rest of this section.

Lemma 1 (Single Step Correctness).
– If e 2

ãÑ e1, e 2
ù {p|l.r}, e1 2

ù {p1|l1.r1}, and p1 ó b1, then p ó b and
rb{lsr ” rb1{l1sr1.

– If e 1MãÑ e1, e 1M
ù {c|l.r}, e1 1M

ù {c1|l1.r1}, and c1 ó <i, b1>, then c ó <i, b> and
rb{lsr ” rb1{l1sr1.

After invocation of that new lemma, we can derive rb{lsr ” rb1{l1sr1 ” q
directly. In order to prove Lemma 1, we will need to state analogous version
for steps at 1M, since the various kinds of multistage term in λ12 are mutually
dependent. Thus, this section proceeds by covering the definition of splitting at
1M, starting with the value form at that world.

4.3 Partial Value Splitting

To provide intuition about the behavior of partial value splitting, consider the
following partial value:
(next{y}, (gr{injL 7}, next{y}))

To construct the value i representing its first-stage components, splitting first
redacts all second-stage (blue) parts, along with the surrounding next annota-
tions. The resulting “holes” in the term are replaced with unit values.
((), (gr{injL 7},()))

Finally, partial value splitting drops gr annotations, yielding:
((), (injL 7,()))

To construct the residual q (corresponding to second-stage computations) par-
tial value splitting redacts all gr blocks (replacing them with unit) and next
annotations:

¨

x ô {x;x}
¨

<> ô {<>;<>}
¨

gr(m) ô {m;<>}
¨

next(y) ô {<>;y}

v1 ô {i1;q1} v2 ô {i2;q2}
<v1, v2> ô {<i1, i2>;<q1, q2>}

v ô {i;q} Sr-s P tinl(-), inr(-), roll(-)u
Srvs ô {Sris;q}

e
1M

ù {c|l.r}
fn(f.x.e) ô {fn(f.x.let(c;<x, y>.<x, roll(y)>));fn(f.<x, roll(l)>.r)}

Fig. 6: Partial value splitting rules.

(y, ((),y))

A precise definition of the partial value splitting relation is given in Figure 6. In
some regards, the formulation of partial value splitting is arbitrary. For instance,
we chose to replace “holes” with unit values, but in fact we could have used any
value there and it would make no difference in the end. There are however, at
least some parts of the definition that are not arbitrary. Importantly, partial
value splitting must not lose any meaningful information, such as injection tags.

4.4 World 1M Term Splitting

The correctness of 1M term splitting with respect to a 1M
ãÑ step is given in

Lemma 1. It’s very similar to the world 2 version, in that the reduction of
the first stage part of e1 should imply reduction of the first stage part of e, and
that the resulting applied resumers should be equivalent. But split forms at 1M
have one more piece of output than those at 2, namely the immediate value i.
Lemma 1 accounts for this by saying that that immediate value must be exactly
identical on both sides of the step.

The correctness of 1M term splitting with respect to hoisting steps is given in
Lemma 2. Because hoisting steps are nothing but rearrangement of second-stage
code, this lemma can use the strong requirement of identical combined terms.

Lemma 2 (Hoisting Step Correctness). If e Õ Jq{yKe1, e 1M
ù {c|l.r}, and

e1 1M
ù {c1|l1.r1}, then c “ c1, and l.r ” l1.let(q;y.r1).

4.5 Example Cases

In this section, we consider a few exemplar cases from the proof of Lemma 1.

Reduction of pi1. Define C “ let(<<i1, i2>, <>>;<y, z>.<pi1(y), z>) and
E “ pi1(<v1, v2>). We are given E

1M
ãÑ v1, E

1M
ù {C|l.pi1(<q1, q2>)}, and

v1
1M
ù {<i1, <>>|_.q1}, and we need to show C ó <i1, <>> and pi1(<q1, q2>) ” q1.

v ô {i;q}

v
1M

ù {<i, <>>|_.q}

e
1M

ù {c|l.r} Sr-s P tinl(-), inr(-), roll(-), unroll(-)u

Sres 1M
ù {let(c;<y, z>.<Srys, z>)|l.r}

e
2

ù {p|l.r}

next(e) 1M
ù {<<>, p>|l.r}

e
1M

ù {c|l.r} Sr-s P tpi1(-), pi2(-)u

Sres 1M
ù {let(c;<y, z>.<Srys, z>)|l.Srrs}

e1
1M

ù {c1|l1.r1} e2
1M

ù {c2|l2.r2}

<e1, e2>
1M

ù

$

’

’

&

’

’

%

¨

˝

let(c1;<y1, z1>.
let(c2;<y2, z2>.
<<y1, y2>, <z1, z2>>))

˛

‚

|<l1, l2>.<r1, r2>

,

/

/

.

/

/

-

e1
1M

ù {c1|l1.r1} e2
1M

ù {c2|l2.r2}

app(e1;e2)
1M

ù
$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˝

let(c1;<y1, z1>.
let(c2;<y2, z2>.
let(app(y1;y2);<y3, z3>.
<y3, <z1, z2, z3>>)))

˛

‹

‹

‚

|<l1, l2, l3>.app(r1;<r2, l3>)

,

/

/

/

/

.

/

/

/

/

-

¨

gr(e) 1M
ù {<e, <>>|_.<>}

e1
1M

ù {c1|l1.r1} e2
1M

ù {c2|l2.r2}

letg(e1;x.e2)
1M

ù
"

let(c1;<x, z1>.let(c2;<y2, z2>.<y2, <z1, z2>>))
|<l1, l2>.let(r1;_.r2)

*

e1
1M

ù {c1|l1.r1} e2
1M

ù {c2|l2.r2} e3
1M

ù {c3|l3.r3}

caseg(e1;x2.e2;x3.e3)
1M

ù
$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˝

let(c1;<y1, z1>.
case(y1;
x2.let(c2;<y2, z2>.<y2, <z1, inl(z2)>>);
x3.let(c3;<y3, z3>.<y3, <z1, inr(z3)>>)))

˛

‹

‹

‚

|<l1, lb>.(r1;case(lb;l2.r<>{x2sr2;l3.r<>{x3sr3))

,

/

/

/

/

.

/

/

/

/

-

¨

q
2

ù {<>|_.q}

e
1M

ù {c|l.r}

prev(e) 2
ù {pi2(c)|l.r}

e
2

ù {p|l.r} Sr-s P tpi1(-), pi2(-), inl(-), inr(-), roll(-), unroll(-), fn(f.x.-)u

Sres 2
ù {p|l.Srrs}

e1
2

ù {p1|l1.r1} e2
2

ù {p2|l2.r2} Sr-, -s P t<-, ->, app(-;-), let(-;x.-)u

Sre1, e2s 2
ù {<p1, p2>|<l1, l2>.Srr1, r2s}

e1
2

ù {p1|l1.r1} e2
2

ù {p2|l2.r2} e3
2

ù {p3|l3.r3}

case(e1;x2.e2;x3.e3)
2

ù {<p1, p2, p3>|<l1, l2, l3>.case(r1;x2.r2;x3.r3)}

Fig. 7: Splitting rules for terms at 1M and 2.

¨
e ” e

e ” e1

e1
” e

e ” e1 e1
” e2

e ” e2

e
1G
á e1

e ” e1

¨

let(q;x.x) ” q

e ” e1 Sr-s P

$

&

%

pi1(-), pi2(-), inl(-), inr(-), roll(-), unroll(-), fn(f.x.-),
<-, e>, <e, ->, app(-;e), app(e;-), let(e;x.-), let(-;x.e),
case(-;x2.e2;x3.e3), case(e1;x2.-;x3.e3), case(e1;x2.e2;x3.-),

,

.

-

Sres ” Sre1
s

Sr-s P tpi1(-), pi2(-), <-, e>, <v, ->, app(-;e), app(v;-), case(-;x2.e2;x3.e3)u
Srlet(q;x.e)s ” let(q;x.Sres)

Fig. 8: Monostage equivalence relation, including reduction, congruence, and let-
transposition rules. Since the 1G fragment of λ12 is monostage, we simply use
e
1G
á e1 to mean any standard reduction from e to e1.

Both of these can be derived directly. This pattern, where the outputs can be
directly derived, extends to the pi2 and prev reduction rules and all value pro-
motion rules.

Reduction of Application. Let
E “ app(fn(f.x.e);v),
E1 “ rfn(f.x.e), v{f, xse,
I “ fn(f.x.let(c;<x, y>.<x, roll(y)>)),
Q “ fn(f.<x, roll(l)>.r), and

C “

»

—

—

–

let(<I, <>>;<y1, z1>.
let(<i1, <>>;<y2, z2>.
let(app(y1;y2);<y3, z3>.
<y3, <z1, z2, z3>>)))

fi

ffi

ffi

fl

.

We are given E 1M
ãÑ E1, E 1M

ù {C|<_,_, l>.app(Q;<q1, l>)},
E1 1M

ù {rI, i1{f, xsc|l.rQ, q1{f, xsr}, and rI, i1{f, xsc ó <i, b>. From this, we can
derive C ó <i, <<>, <>, roll(b)>> and app(Q;<q1, roll(b)>) ” rQ, q1, b{f, x, lsr
directly. This pattern applies to all of the other reduction rules involving substi-
tution, namely those for caseg, and letg.

Compatibility of pi1 at 2. By the case, we are given pi1(e) 2
ãÑ pi1(e1),

pi1(e) 2
ù {p|l.pi1(r)}, pi1(e1) 2

ù {p1|l1.pi1(r1)}, and p1 ó b1. Inversion of
the first three yields e 2

ãÑ e1, e 2
ù {p|l.r}, and e1 2

ù {p1|l1.r1}. Using Lemma 1
inductively gives p ó b and rb{lsr ” rb1{l1sr. From this, rb{lspi1(r) ” rb1{l1spi1(r)
can be derived directly. This pattern generalizes to all world 2 compatibility
rules.

Compatibility of pi1 at 1M. By the case, we are given pi1(e) 1M
ãÑ pi1(e1),

pi1(e) 1M
ù {let(c;<y, z>.<pi1(y), z>)|l.pi1(r)},

pi1(e1) 1M
ù {let(c1;<y, z>.<pi1(y), z>)|l1.pi1(r1)}, and

let(c1;<y, z>.<pi1(y), z>) ó <i, b1>. Inversion of the first three yields e 1M
ãÑ e1,

e
1M
ù {c|l.r}, and e1 1M

ù {c1|l1.r1}, and inversion of the reduction yields, for
some i2, c1 ó <<i, i2>, b1>. Using Lemma 1 inductively gives c ó <<i, i2>, b> and
rb{lsr ” rb1{l1sr. From this, we can derive let(c;<y, z>.<pi1(y), z>) ó <i, b>
and rb{lspi1(r) ” rb1{l1spi1(r) directly. This pattern generalizes to all world
1M compatibility rules.

Compatibility of gr. We are given gr(e) 1M
ãÑ gr(e1), gr(e) 1M

ù {<e, <>>|_.<>},
gr(e1) 1M

ù {<e1, <>>|_.<>}, and <e1, <>> ó <i, <>>. Inversion of the step and
reduction yield e 1GãÑ e1 and e1 ó i. As a simple property of monostage reduction
(which 1G

ãÑ is), we know e ó i. From here, we can derive <e, <>> ó <i, <>> and
<> ” <> directly.

4.6 Role of World 1G

The splitting algorithm described in the previous subsections operates purely on
the local structure of λ12 terms. One artifact of this design is that splitting 1M
terms may generate resumers containing unnecessary logic. For example, the rule
for splitting 1M caseg terms inserts the tag from the caseg argument into the
boundary value, then decodes this tag in the resumer. This logic occurs regardless
of whether the terms forming the branches of the caseg contain second-stage
computations. Worse, if this caseg appeared in the body of a recursive function
with no other second-stage computations, splitting would generate a resumer
with (useless) recursive calls.

An illustrative example is the part function in the quickselect example of
Section 6.3. If part were defined at 1M then (like qs) it would split into two
functions part1 and part2, the latter of which recursively computes the (trivial)
second-stage component of part’s result. Moreover, qs2 would call part2, just
as qs1 calls part1:
fun qs2 (p : tree, k : int) : int =
... | Branch (i,h,p1,p2) =>

let val () = part2 ((),()) in
case compare k i of ...

Rather than attempt global optimization of the outputs of splitting, we in-
stead leverage the type system to indicate when a term contains no second-stage
computations by adding a third world 1G whose terms are purely first-stage.
Defining part in this world is tantamount to proving it has no second-stage com-
putations, allowing splitting to avoid generating the resumer part2 and calling
it from qs2.

Since direct staged term evaluation (Section 3) reduces all first-stage terms to
value forms without any remaining stage two work, the distinction between 1M
and 1G is unnecessary. In contrast, when performing program transformations
before the first-stage inputs are known, it is valuable to form a clear distinction
between ground and mixed terms. This was similarly observed in prior work
seeking to implement self-applicable partial evaluators [20,19]. While this paper

assumes that ground annotations already exist in the input, it may be possible
to use binding-time analysis techniques to automatically insert them. Ground is
also similar to the validity mechanism in ML5 [21].

4.7 Typing the Boundary Data Structure

One of the central features of our splitting algorithm is that it encodes the
control flow behavior of the original staged program into the boundary data
structure. For instance, the case and caseg splitting rules put injection tags on
the boundary based on which branch was taken, and the fn rule adds a roll tag
to the boundary. As a result, the boundary value passed between the two output
programs has a (potentially recursive) structure like a tree or list.

This structure can be described with a type; for instance, the staged quicks-
elect yields a binary search tree. Indeed, for most of our examples in Section 6,
inferring this type is straight-forward. However, we do not yet have a formal
characterization of these boundary types that is defined for all λ12 programs,
though we plan to pursue this in future work.5

5 Implementation

We have encoded the type system, dynamic semantics, splitting algorithm, and
output semantics in Twelf, as well as all of the theorems of Sections 3 and 4, and
their proofs. We also have a Standard ML implementation of the λ12 language,
a staged interpreter, the splitting algorithm, and an interpreter for split pro-
grams. This implementation extends the language described in Section 3 with
ints, bools, let statements, n-ary sums and products, datatype and function
declarations, and deep pattern matching (including next() and gr() patterns).
The code snippets in this paper are written in our concrete syntax, using these
additional features when convenient. Our expanded syntax allows staging anno-
tations around declarations. For example,
@gr{

datatype list = Empty | Cons of int * list
fun part (...) = ...

}
fun qss (...) = ...

declares the list datatype and part function at world 1G, by elaborating into:
val gr{Empty} = gr{roll (inj ...)}
val gr{Cons} = gr{fn (...) => roll (inj ...)}
val gr{part} = gr{fn (...) => ...}
val qss = fn (...) => ...

5 Observe that in the outputs of splitting we could have omitted the roll tag from
functions or replaced inl(a) and inr(b) with <0, a> and <1, b>, and the proof of
correctness would still have gone through. We chose the tags, however, in order to
keep the typed interpretation more natural, even in absence of a formal result.

In the splitting algorithm, we perform a number of optimizations which dras-
tically improve the readability of split programs. For example, we split patterns
directly, instead of first translating them into lower-level constructs. We also
take advantage of many local simplifications, most notably, not pairing precom-
putations when one is known to be <>.

6 Examples of Splitting

Now we investigate the behavior of our splitting algorithm on several examples.
The split code that follows is the output of our splitting implementation; for
clarity, we have performed some minor optimizations and manually added type
annotations (including datatype declarations and constructor names), as our
algorithm does not type its output.

6.1 Dot Product

Our first example, dot, appears in [17]. dot is a first-order, non-recursive function—
precisely the sort of code studied in prior work on pass separation for imperative
languages. dot takes the dot product of two three-dimensional vectors, where
the first two coordinates are first-stage, and the last coordinate is second-stage.
type vec = ∇int * ∇int * ©int
// dot : vec * vec -> ©int
fun dot ((gr{x1},gr{y1},next{z1}),(gr{x2},gr{y2},next{z2})) =

next{ prev{hold gr{(x1*x2) + (y1*y2)}} + (z1*z2) }

The body of dot is an int term at world 2 containing an int computation of
(x1*x2) + (y1*y2) which is promoted from world 1G to world 2. We would
expect the first stage of the split program to take the first two coordinates of
each vector and perform that first-stage computation; and the second stage to
take the final coordinates and the result of the first stage, then multiply and
add. Our algorithm splits dot into the two functions:
fun dot1 ((x1,y1,()), (x2,y2,())) = ((), (x1*x2)+(y1*y2))
fun dot2 ((((),(),z1),((),(),z2)),l) = l+(z1*z2)

As expected, dot1 returns (x1*x2)+(y1*y2) as the precomputation, and dot2
adds that precomputation to the products of the final coordinates. This is exactly
what is done in [17], though they write the precomputation into a mutable cache.

6.2 Exponentiation by Squaring

Our next example, exp, is a mainstay of the partial evaluation literature (for
example, in [13]). exp recursively computes be using exponentiation by squaring,
where e is known at the first stage, and b is known at the second stage.
fun exp (next{b} : ©int , gr{e} : ∇int) =
if gr{e == 0} then next{1}
else if gr{e mod 2 == 0} then exp(next{b*b},gr{e/2})
else next{b*prev{exp(next{b*b},gr{(e-1)/2})}}

Because exp is a recursive function whose conditionals test the parity of the
exponent argument, the sequence of branches taken corresponds exactly to the
binary representation of e. Partially evaluating exp with e eliminates all of the
conditionals, selecting and expanding the appropriate branch in each case.

Our algorithm, on the other hand, produces:
datatype binnat = Zero

| Even of binnat
| Odd of binnat

fun exp1 (b : unit, e : int) =
if e == 0 then ((), Zero)
else if e mod 2 == 0 then ((), Even (#2 (exp1 ((), e/2))))
else ((), Odd (#2 (exp1 ((), (e-1)/2))))

fun exp2 ((b : int, e : unit), l : binnat) =
case l of

Zero => 1
| Even n => exp2 ((b*b, ()), n)
| Odd n => b * exp2 ((b*b, ()), n)

exp1 recursively performs parity tests on e, but unlike exp, it simply computes
a data structure (a binnat) recording which branches were taken. exp2 takes b
and a binnat l, and uses l to determine how to compute with b.

Of course, the binnat computed by exp1 is precisely the binary representa-
tion of e! While partial evaluation realizes exp’s control-flow dependency on a
fixed e by recursively expanding its branches in place, we explicitly record this
dependency generically over all e by creating a boundary data structure. This
occurs in the 1M

ù rule for case, which emits a tag corresponding to the taken
branch in the precomputation, and cases on it (as lb) in the residual.

Because splitting exp does not eliminate its conditionals, partial evaluation
is more useful in this case. (Notice, however, that partially evaluating exp2 on
a binnat is essentially the same as partially evaluating exp on the correspond-
ing int.) Nevertheless, splitting exp still demonstrates how our algorithm finds
interesting data structures latent in the structure of recursive functions.

6.3 Quickselect

Let us return to the quickselect algorithm, which we discussed at length in
Section 2. (The code is in Figure 1(b).) qss finds the kth largest element of a
list l by recursively partitioning the list by its first element, then recurring on
the side containing the kth largest element. l is first-stage and k is second-stage.

Stage-splitting qss produces:
datatype tree = Leaf | Branch of int * tree * int * tree
datatype list = Empty | Cons of int * list

fun part ((p,l):int*list) : (int*list*list) =

case l of Empty => (0,Empty, Empty)
| Cons (h,t) =>

let val (n,left,right) = part (p,t) in
if h<p then (n+1,Cons(h,left),right)

else (n,left,Cons(h,right))

fun qs1 (l : list, k : unit) =
((), case l of Empty => Leaf

| Cons (h,t) => Branch (
let val (n,left,right) = part (h,t) in
(n, #2 (qs1 left k), h, #2 (qs1 right k))))

fun qs2 (((), k : int), p : tree) =
case p of Leaf => 0
| Branch (n,left,h,right) =>

case compare k n of
LT => qs2 (((), k), left)

| EQ => h
| GT => qs2 (((), k-n-1), right)

This is nearly identical to the cleaned-up code we presented in Figure 2, except
we do not suppress the trivial inputs and outputs of qs1 and qs2.

The function qs1 partitions l, but since the comparison with k (to determine
which half of l to recur on) is at the second stage, it simply recurs on both halves,
pairing up the results along with h (the head of l) and n (the size of the left
half). qs2 takes k and this tree p, and uses k to determine how to traverse p.

How does our splitting algorithm generate binary search trees and a traversal
algorithm? The 2

ù rule for case tuples up the precomputations for its branches,
and in the residual, selects the residual corresponding to the appropriate branch.
The tree is implicit in the structure of the code; ordinarily, the quickselect algo-
rithm only explores a single branch, but the staging annotations force the entire
tree to be built.

This is an instance where stage-splitting is more practical than partial evalu-
ation; if l is large, partially evaluating quickselect requires runtime generation
of a huge amount of code simultaneously encoding the tree and traversal algo-
rithm. (Avoiding the code blowup, by not expanding some calls to part, would
result in duplicating first-stage computations.)

Note that the recursive part function is defined within a gr annotation. As
explained in Section 4.6, defining part at 1M would cause it to split in a way
that incurs extra cost at the second stage. In this case, that cost would be Θpnq
in the size of the input list, enough to overpower the asymptotic speedup gained
elsewhere. With gr annotations, however, this can be prevented.

As discussed in Section 2, qs1 performs Θpn log nq expected work per call,
whereas qs2 performs Θplog nq expected work. This results in a net speedup over
standard quickselect if we perform many (specifically, ωplog nq) queries on the
same list—precisely the topic of our next example.

6.4 Mixed-Stage Map Combinator

As a lambda calculus, one of the strengths of λ12 is that it can express combi-
nators as higher order functions. In this example, we consider just such a com-
binator: tmap, which turns a function of type ∇list ˚©intÑ©int into one
of type ∇list ˚©list2Ñ©list2, by mapping over the second argument.6

@next{ datatype list2 = Empty2 | Cons2 of int * list2 }

fun tmap (f : ∇list * ©int -> ©int) (l : ∇list, q : ©list2) =
next{ let fun m Empty2 = Empty2

| m (Cons2(h,t)) = Cons2(prev{f (l,next{h})}, m t)
in m prev{q}}

val mapqss = tmap qss

Importantly, tmap f performs the first-stage part of f once and second-stage
part of f many times. This was discussed in the context of partial evaluation in
Section 3.4, but it is especially clear when we look at the output of splitting:
fun tmap1 f = (fn (l,()) => ((),#2 (f (l,()))),())
val (mapqss1,()) = tmap1 qs1

datatype list2 = Empty2 | Cons2 of int * list2
fun tmap2 (f,()) ((l,q), p : tree) =

let fun m Empty2 = Empty2
| m (Cons2(h,t)) = Cons2(f ((l,h), p), m t)

in m q
val mapqss2 = tmap2 (qs2, ())

Indeed, observe that the argument f (for which qs1 is later substituted) of tmap1
is called only once, whereas the corresponding argument f (for which qs2 is later
substituted) in tmap2 is evaluated once per element in the query list q.

6.5 Composing Graphics Pipeline Programs

Composable staged programs are particularly important the domain of real-time
graphics. This need arises because modern graphics architectures actually require
that graphics computations be structured as a pipeline of stages which perform
increasingly fine-grained computations (e.g., per-object, per-screen region, per-
pixel), where computations in later stages use the results of an earlier stage
multiple times [28].

The standard way to program these graphics pipelines is to define one pro-
gram (usually called a shader) per stage. In other words, the programmer is
expected to write their multi-stage programs in an already split form. This re-
quirement results in complex code where invariants must hold across different
stages and local changes to the logic of one stage may require changes to that of

6 λ12 doesn’t have a way to “share” datatype declarations between stages, so we define
list2 to be a list of integers at the second stage.

upstream stages. This harms composition and modularity. Graphics researchers
therefore have suggested using mechanisms like our stages [24,8,11] to express
graphics program logic, including representing entire pipeline as a single multi-
stage function [8].

As a language, λ12 is well suited for specification of such functions, and we
give a simple example below. In it, we consider a graphics pipeline program to
be a staged function that takes an object definition in the first stage (object)
and a pixel coordinate in the second stage (©coord), and emits the color of the
object at the specified pixel (©color). Given two such multistage functions, we
then define a combinator that multiplies their results pointwise in the second
stage.7

datatype object = ...
@next{ type coord = int * int

type color = ... }
type pipeline = object * ©coord -> ©color

fun shade (refl : pipeline, albedo : pipeline) : pipeline =
fn (obj : object, next{xy} : ©coord) =>

prev{refl (obj,next{xy})} * prev{albedo (obj,next{xy})}

Prior work [8] lacks the ability to define such combinators, because it does not
support higher order functions.

7 Related Work

Frequency reduction and precomputation are common techniques for both de-
signing algorithms and performing compiler optimizations [15]. The idea behind
precomputation is to identify computations that can be performed earlier (e.g.,
at compile time) if their inputs are available statically and perform them at that
earlier time. Dynamic algorithms, partial evaluation, and incremental computa-
tion are all examples of precomputation techniques. The idea behind frequency
reduction is to identify computations that are performed multiple times and
pull them ahead so that they can be performed once and used later as needed.
Dynamic programming, loop hoisting, and splitting (presented here) are all ex-
amples of frequency reduction techniques.

Precomputation techniques. Perhaps one of the most studied examples of pre-
computation is partial evaluation, which distinguishes between static (compile-
time) and dynamic (runtime) stages. Given a program and values for all static
inputs, partial evaluation generates a specialized program by performing com-
putations that depend only on the static inputs [13]. We refer the reader to the
7 Although this is a general pointwise multiplication combinator, the variable names
suggest a possible interpretation of the inputs and output: the first input function
calculates the albedo of an object (a measure of how much light it reflects), the
second input calculates the object’s incoming light, and so the output (the product
of these terms) is a function that calculates the outgoing light from an object.

book by Jones, Gommard, and Sestoft for a comprehensive discussion of partial
evaluation work until the early 90’s [14].

Early approaches to partial evaluation can be viewed as operating in two
stages: binding time analysis and program specialization. For a multivariate pro-
gram with clearly marked static and dynamic arguments, binding-time analysis
identifies all the parts of the program that can be computed by the knowledge
of static arguments. Using this information and the values of static arguments,
program specialization specializes the original program to a partially-evaluated
one that operates on many different dynamic arguments. This approach has
been applied to construct partial evaluators for a number of languages such as
Scheme [2,3].

Researchers have explored other staging transformations that, like splitting,
partition an input two-stage program into two components, one corresponding
to each stage. In particular, binding time separation [20] (also called program
bifurcation [6]) has been used as a preprocessor step in partial evaluators, allow-
ing efficient specialization of programs with mixed-stage data structures without
changes to the specializer itself. Notably, the grammar-based binding-time speci-
fications used in binding time separation are capable of describing data structures
with purely-static, purely-dynamic, and mixed-stage content, much like the type
system of λ12 (though this correspondence is less clear without our addition of
1G and ∇).

However unlike splitting, where the goal is to emit code where first-stage re-
sults are computed once and then reused in multiple invocations of second-stage
execution, the second (dynamic) function produced by binding time separation
does not use the results of the first; instead, it has access to the first-stage inputs
and recomputes all required first-stage computations. As noted by Knoblock and
Ruf [17], it may be possible to modify the program bifurcation algorithm to cache
and reuse the intermediate results, but this was never attempted. Alternatively,
our algorithm could potentially be used as the basis of a general bifurcation
algorithm in a partial evaluator.

Experience with binding time analysis showed that it can be difficult to con-
trol, leading to programs whose performance was difficult to predict. This led
to investigations based on type systems for making the stage of computations
explicit in programs [10,23] and writing “metaprograms” that, when evaluated
at a stage, yield a new program to be evaluated at the next stage. Davies [4]
presented a logical construction of binding-time type systems by deriving a type
system via the Curry-Howard correspondence applied to temporal logic. Davies
and Pfenning proposed a new type system for staged computation based on a par-
ticular fragment of modal logic [5]. The work on MetaML extended type-based
techniques to a full-scale language by developing a statically typed programming
language based on ML that enables the programmer to express programs with
multiple stages [31,30]. MetaML’s type system is similar to Davies [4] but extends
it in several important ways. Nanevksi and Pfenning further extended the these
techniques by allowing free variables to occur within staged computations [22].

The type-system of λ12 is closely related to this later line of work on metapro-
gramming and staged computation. The specific extension to the typed lambda
calculus that we use here is based on the © modality of Davies [5]. Our types
differ in the restriction to two stages and the addition of ∇; however, the key
difference between our work and this prior work is that we instead focus on the
problem of splitting.

Another class of precomputation techniques is incremental computation, where
a program can efficiently respond to small changes in its inputs by only recom-
puting parts of the computation affected by the changes [7,25,26,1]. However,
unlike splitting, incremental computation does not require fixing any of its in-
puts and, in the general case, allows for all program inputs to change. Thus,
the benefits of incremental computation depend on what changes to inputs are
made. For example, while it is possible to apply incremental computation to
the quickselect example in Section 2, techniques would unfold the quickselect
function based on the demanded ranks, potentially incurring linear time cost
at each step of the algorithm (as opposed to the logarithmic result produced by
splitting). Moreover, incremental computation techniques must also maintain so-
phisticated data structures dynamically at run time to track what computations
must be performed.

Stage Splitting. Algorithms for stage splitting have appeared in the literature un-
der the names pass separation [15] and data specialization [17]. Perhaps the clos-
est work to ours is the algorithm for data specialization given by Knoblock and
Ruf [17], which also seeks to statically split an explicitly staged program into two
stages. However, they only consider a simple first-order language and straight-
line programs. Their work also treats all computations guarded by second-stage
conditionals as second-stage computations, which would prevent optimization
(via splitting) of programs such as quickselect.

As noted in Section 6.5, splitting algorithms have also been a topic of in-
terest in programming systems for computer graphics, where, to achieve high
performance, programs are manually separated into components by frequency
of execution corresponding to graphics hardware pipeline stages. The software
engineering challenges of modifying multiple per-stage programs have led to
suggestions of writing graphics programs in an explicitly-staged programming
language [24,8,11] and deferring the task of pass separation to the compiler.
However, all prior splitting efforts in computer graphics, like that of Knoblock
and Ruf [17], have been limited to simple, imperative languages.

Defunctionalization. Defunctionalization [27] is a program transformation that
eliminates high-order functions and replaces them with lower order functions
that manipulate a data structure encoding the original control flow. This op-
eration has similarity to our splitting transformation, which eliminates staging
in a program by encoding control flow in a data structure passed between the
stage one and stage two outputs. It would interesting to explore the possibil-
ity of a semantics-preserving transformation to convert a staged program into a
higher-order form, and then applying defunctionalization to obtain our results.

8 Conclusion

This paper presents a splitting algorithm for λ12, a two-staged typed lambda cal-
culus with support for recursion and first-class functions. The type system of λ12
uses three worlds 1M, 1G, and 2 to classify code by its stage, with the modalities
© and ∇ providing internalizations of second-stage code and ground first-stage
code to the mixed world. We present a dynamic semantics that evaluates terms
in two passes and provides an eager interpretation of next via hoisting steps. We
prove the correctness of our splitting algorithm against the dynamic semantics,
and implement this proof in Twelf. Finally, we discuss our implementation of λ12
and its splitting algorithm and analyze their behavior for a number of staged
programs, including those with higher-order and recursive functions.

Looking forward, we are interested in investigating the behavior of splitting in
the presence of richer language features such as mutation, polymorphism, parallel
constructs, and more than two stages. Also while we have proven the dynamic
correctness of our splitting algorithm, we do not yet have a characterization of
the types of the output or of the cost behavior of output terms.

References

1. Acar, U.A., Blelloch, G.E., Blume, M., Harper, R., Tangwongsan, K.: An experi-
mental analysis of self-adjusting computation. ACM Trans. Prog. Lang. Sys. 32(1),
3:1–53 (2009)

2. Bondorf, A., Danvy, O.: Automatic autoprojection of recursive equations with
global variable and abstract data types. Sci. Comput. Program. 16(2), 151–195
(Sep 1991)

3. Consel, C.: New insights into partial evaluation: the schism experiment. In:
Ganzinger, H. (ed.) ESOP ’88, Lecture Notes in Computer Science, vol. 300, pp.
236–246 (1988)

4. Davies, R.: A temporal-logic approach to binding-time analysis. In: LICS. pp. 184–
195 (1996)

5. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001)

6. De Niel, A., Bevers, E., De Vlaminck, K.: Program bifurcation for a polymor-
phically typed functional language. SIGPLAN Not. 26(9), 142–153 (May 1991),
http://doi.acm.org/10.1145/115866.115880

7. Demers, A., Reps, T., Teitelbaum, T.: Incremental evaluation of attribute gram-
mars with application to syntax-directed editors. In: Principles of Programming
Languages. pp. 105–116 (1981)

8. Foley, T., Hanrahan, P.: Spark: Modular, composable shaders for graphics hard-
ware. ACM Trans. Graph. 30(4), 107:1–107:12 (Jul 2011)

9. Futamura, Y.: Partial evaluation of computation process – an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 45–50 (1971)

10. Gomard, C.K., Jones, N.D.: A partial evaluator for the untyped lambda-calculus.
J. Funct. Program. 1(1), 21–69 (1991)

11. He, Y., Gu, Y., Fatahalian, K.: Extending the graphics pipeline with adaptive,
multi-rate shading. ACM Trans. Graph. 33(4), 142:1–142:12 (Jul 2014)

http://doi.acm.org/10.1145/115866.115880

12. Hoare, C.A.R.: Algorithm 65: Find. Commun. ACM 4(7), 321–322 (Jul 1961)
13. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3),

480–503 (Sep 1996)
14. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program

generation. Prentice Hall international series in computer science, Prentice Hall
(1993)

15. Jørring, U., Scherlis, W.L.: Compilers and staging transformations. In: Proceedings
of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 86–96. POPL ’86, ACM, New York, NY, USA (1986)

16. Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand Co., Inc. (1952)
17. Knoblock, T.B., Ruf, E.: Data specialization. In: Proceedings of the ACM SIG-

PLAN 1996 Conference on Programming Language Design and Implementation.
pp. 215–225. PLDI ’96, ACM, New York, NY, USA (1996)

18. Krishnaswami, N.R.: Higher-order functional reactive programming without space-
time leaks. In: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming. pp. 221–232. ICFP ’13, ACM, New York, NY, USA
(2013)

19. Mogensen, T.A.: Binding time analysis for polymorphically typed higher order
languages. In: Proceedings of the International Joint Conference on Theory and
Practice of Software Development, Volume 2: Advanced Seminar on Foundations
of Innovative Software Development II and Colloquium on Current Issues in Pro-
gramming Languages. pp. 298–312. TAPSOFT ’89, Springer-Verlag, London, UK,
UK (1989), http://dl.acm.org/citation.cfm?id=646625.698197

20. Mogensen, T.A.: Separating binding times in language specifications. In: Proceed-
ings of the Fourth International Conference on Functional Programming Languages
and Computer Architecture. pp. 12–25. FPCA ’89, ACM, New York, NY, USA
(1989), http://doi.acm.org/10.1145/99370.99372

21. Murphy, VII, T., Crary, K., Harper, R.: Distributed control flow with classical
modal logic. In: Ong, L. (ed.) Computer Science Logic, 19th International Work-
shop (CSL 2005). Lecture Notes in Computer Science, Springer (August 2005)

22. Nanevski, A., Pfenning, F.: Staged computation with names and necessity. J.
Funct. Program. 15(5), 893–939 (2005)

23. Nielson, F., Nielson, H.R.: Two-level Functional Languages. Cambridge University
Press, New York, NY, USA (1992)

24. Proudfoot, K., Mark, W.R., Tzvetkov, S., Hanrahan, P.: A real-time procedural
shading system for programmable graphics hardware. In: Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques. pp. 159–
170. SIGGRAPH ’01, ACM (2001)

25. Pugh, W., Teitelbaum, T.: Incremental computation via function caching. In: Prin-
ciples of Programming Languages. pp. 315–328 (1989)

26. Ramalingam, G., Reps, T.: A categorized bibliography on incremental computa-
tion. In: Principles of Programming Languages. pp. 502–510 (1993)

27. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference - Volume 2. pp. 717–740. ACM ’72,
ACM, New York, NY, USA (1972), http://doi.acm.org/10.1145/800194.805852

28. Segal, M., Akeley, K.: The OpenGL Graphics System: A Specification (Version
4.0). The Khronos Group, Inc. (2010)

29. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4–5), 464–497
(1996)

30. Taha, W.: Multi-Stage Programming: Its Theory and Applications. Ph.D. thesis,
Oregon Graduate Institute of Science and Technology (1999)

http://dl.acm.org/citation.cfm?id=646625.698197
http://doi.acm.org/10.1145/99370.99372
http://doi.acm.org/10.1145/800194.805852

31. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation. PEPM ’97 (1997)

	Automatically Splitting a Two-Stage Lambda Calculus

