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Abstract
Homotopy type theory is an extension of Martin-Löf type theory,
based on a correspondence with homotopy theory and higher cat-
egory theory. In homotopy type theory, the propositional equality
type becomes proof-relevant, and corresponds to paths in a space.
This allows for a new class of datatypes, called higher inductive
types, which are specified by constructors not only for points but
also for paths. In this paper, we consider a programming application
of higher inductive types. Version control systems such as Darcs are
based on the notion of patches—syntactic representations of edits
to a repository. We show how patch theory can be developed in ho-
motopy type theory. Our formulation separates formal theories of
patches from their interpretation as edits to repositories. A patch
theory is presented as a higher inductive type. Models of a patch
theory are given by maps out of that type, which, being functors,
automatically preserve the structure of patches. Several standard
tools of homotopy theory come into play, demonstrating the use of
these methods in a practical programming context.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Type Structure

General Terms Languages, Theory

1. Introduction
Martin-Löf’s intensional type theory (MLTT) is the basis of proof
assistants such as Agda [29] and Coq [9]. Homotopy type theory
is an extension of MLTT based on a correspondence with homo-
topy theory and higher category theory [4, 11, 13, 14, 24, 36–38].
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In homotopy theory, one studies topological spaces by way of their
points, paths (between points), homotopies (paths or continuous de-
formations between paths), homotopies between homotopies (paths
between paths between paths), and so on. In type theory, a space
corresponds to a type A. Points of a space correspond to elements
a, b : A. Paths in a space are represented by elements of the identity
type (propositional equality), which we notate p : a =A b. Homo-
topies between paths p and q correspond to elements of the iterated
identity type p =a=Ab q. The rules for the identity type allow one
to define the operations on paths that are considered in homotopy
theory. These include identity paths refl : a = a (reflexivity of
equality), inverse paths ! p : b = a when p : a = b (symme-
try of equality), and composition of paths q ◦ p : a = c when
p : a = b and q : b = c (transitivity of equality), as well as homo-
topies relating these operations (for example, refl ◦ p = p), and ho-
motopies relating those homotopies, etc. This correspondence has
suggested several extensions to type theory. One is Voevodsky’s
univalence axiom [17, 37], which describes the path structure of
the universe (the type of small types). Another is higher inductive
types [25, 26, 32], a new class of datatypes specified by constructors
not only for points but also for paths. Higher inductive types were
originally introduced to permit basic topological spaces such as cir-
cles and spheres to be defined in type theory, and have had signifi-
cant applications in a line of work on using homotopy type theory to
give computer-checked proofs in homotopy theory [19, 20, 23, 35].

The computational interpretation of homotopy type theory as a
programming language is a subject of active research, though some
special cases have been solved, and work in progress is promis-
ing [5, 6, 22, 33]. The main lesson of this work is that, in homo-
topy type theory, proofs of equality have computational content,
and can influence how a program runs. This suggests investigat-
ing whether there are programming applications of computation-
ally relevant equality proofs. Some preliminary applications have
been investigated. For example, Licata and Harper [21] apply ideas
related to homotopy type theory to modeling variable binding. Al-
tenkirch [2] shows that containers [1] in homotopy type theory can
be used to represent more data structures than in MLTT, such as
sets and bags. However, at present, the programming side is less
well-developed than the mathematical applications.

In this paper, we present an example of using higher induc-
tive types in programming. The example we consider is patch the-
ory [7, 10, 15, 16, 28, 31], inspired by the version control system
Darcs [31]. Intuitively, a patch is a syntactic representation of a
function that changes a repository. A patch (“delete file f”) applies



in certain repository contexts (where the file f exists), and results
in another repository context (where the file f no longer exists)—
so the contexts act as types for patches. Patches are closed under
identity (a no-op), composition (sequencing), and perhaps inverses
(undo) — which is present in some formulations of patch theory but
not others. These satisfy certain general laws—composition is asso-
ciative; inverses cancel. Moreover, there are domain-specific patch
laws about the basic patches (“the order of edits to independent
lines of a file can be swapped”). The semantics of a patch explains
how to apply it to change a repository. Several syntactic transforma-
tions on patches are considered, such as merging, which reconciles
divergent edits to a repository, and cherry-picking, which selects a
subset of changes to merge. The semantics and syntactic transfor-
mations are required to satisfy certain laws, such as the fact that
applying a composition of patches has the same effect as the com-
position of applying the patches (facilitating optimization), and that
merging is a symmetric operation, so that independently computed
merges agree (facilitating collaboration).

Building on this work, we develop patch theory in the context
of homotopy type theory, using paths to represent aspects of patch
theory. Specifically, we represent patches as paths — making use
of the proof-relevant notion of equality in homotopy type theory —
and we represent the laws that patches and transformations must
satisfy as paths-between-paths. We make an explicit distinction
between patch theories1 and models. A patch theory is presented by
a higher inductive type, where the points of the type are repository
contexts, the paths in the type are patches, and the paths between
paths are patch laws. This presentation of a patch theory consists of
only the basic patches (“add / remove files”) and laws about them.
Identity, inverse, and composition operations are provided by the
higher inductive type, and automatically satisfy the desired laws.

Models of a patch theory are represented as functions from the
higher inductive type representing it. Because functions in homo-
topy type theory are always functorial, such models are a functorial
semantics in the sense of Lawvere [18]. These models depend cru-
cially on the proof-relevance of paths, assigning proofs of equal-
ities a computational meaning as functions acting on repositories.
Functoriality implies that a model must respect identity, inverses,
and composition (e.g. sending composition of patches to compo-
sition of functions) and validate the patch laws. So a patch theory
is a formal object, a particular higher inductive type, and the the-
ory is realized by a formal object, a mapping into another type.
One syntactic theory of patches can have many different models,
e.g. ones that maintain different metadata. Syntactic transforma-
tions on patches, such as patch optimization or merging, can be
implemented as functions on paths. Some of these operations can
be defined directly in a functorial way, whereas others require de-
veloping a derived recursion principle for patches.

Our work shows what standard homotopy-theoretic tools mean
in a practical programming setting. For example, our first exam-
ple of a patch theory is actually the circle. Defining the seman-
tics of patch theories uses a programming technique derived from
homotopy-theoretic examples. The derived recursion principle for
patches is analogous to calculations of homotopy groups in homo-
topy theory. We hope that this paper will make higher inductive
types more accessible to the functional programming community,
so that programmers can begin to consider applications of them.

Homotopy type theory is still under development, and one of our
goals in this paper is to provide a worked example that can motivate
future work on it. First, we use an informal concrete syntax for

1 There is an unfortunate terminological coincidence here: “Patch theory”
means “the study of patches,” just as “group theory” is the study of groups.
“A patch theory” means “a specific language of patches,” just as “a theory
in first-order logic” is a specific collection of terms and formulae.

higher inductive types and pattern-matching functions on them;
this is similar to the informal type theory used in the Homotopy
Type Theory book [35], but with a more programming-oriented
notation. Our development using this syntax could be translated
to Agda or Coq, using techniques to simulate higher inductives,
but we have not yet implemented the examples in this paper in a
proof assistant. Second, because a full interpretation of homotopy
type theory as a programming language is work in progress, we
do not have a formal operational semantics that we can use to
run the programs in this paper. However, we will speculate on
how we expect these specific programs to run, based on existing
work on this topic [5, 6, 22, 33]. One interesting issue that arises
is that several of the examples in the paper are functions into
contractible types, which are types with exactly one inhabitant up to
homotopy. Thus, up to paths/propositional equality, such a function
can return any element of the type, but based on existing work on
the computational interpretation, we expect that the functions we
define will in fact compute the elements we intend them to.

In Section 2, we provide a brief introduction to homotopy type
theory and higher inductive types. In Section 3, we review patch
theory, and describe our approach to representing it in homotopy
type theory. In Sections 4, 5, and 6, we discuss three successively
more complex patch languages.

2. Basics of Homotopy Type Theory
We review some basic definitions; see [35] for more details.

2.1 Paths
In type theory, there are two notions of equality. Definitional equal-
ity is a proof-irrelevant judgement relating two terms. It is a congru-
ence containing operational steps like β-reduction ((λ x.e) e’ is
definitionally equal to [e’/x]e). Uses of definitional equality are
not marked in the proof term or program: if e has type τ , then e
also has any other type τ ′ that is definitionally equal to τ . On the
other hand, propositional equality is a proof-relevant type relating
two terms; it is often also called the identity type, which we write e
= e’. Uses of propositional equality are explicitly marked in the
program: if e has type τ and p is an element of the identity type
τ = τ ′, then coe p e has type τ ′.

In homotopy type theory, elements of the identity type are
used to model a notion of paths in a space or morphisms in a
groupoid. Using the identity type, specified by its introduction
rule, reflexivity, and elimination rule, known as path induction or
J , one can define path operations including a constant path refl
(witnessing the reflexivity of equality); composition of paths q ◦ p
(witnessing the transitivity of equality)2, and the inverse of a path !
p (witnessing the symmetry of equality). Moreover, there are paths
between paths, or homotopies, which are represented by proofs
of equality in identity types. For example, there are homotopies
expressing that the path operations satisfy the group(oid) laws:

refl ◦ p = p = p ◦ refl
(r ◦ q) ◦ p = r ◦ (q ◦ p)
(! p ◦ p) = refl = (p ◦ ! p)

Any simply-typed function f : A � B determines a function

ap f : x = y � f(x) = f(y)

that takes paths x =A y to paths f(x) =B f(y). Logically, this ex-
presses that propositional equality is a congruence; homotopically,
it expresses that any function has an action on paths; and categor-
ically, it expresses that functions are functors, preserving the path

2 Composition is in function-composition, or applicative, order, (q:y=z)
◦ (p:x=y) : x=z.



structure of types. ap f preserves the path operations, in the sense
that there are homotopies

ap f (refl(x)) = refl(f x)
ap f (! p) = ! (ap f p)
ap f (q ◦ p) = (ap f q) ◦ (ap f p)

For a family of types B : A � Type and a dependent function
f : (x : A) � B(x), there is a function

apd : (p : x = y) � PathOver B p (f x) (f y)

PathOver B p b1 b2 represents a path in the dependent type B
between b1 : B(a1) and b2 : B(a2) correlated by a path p :
a1 = a2. Logically, it is a kind of heterogeneous equality [27]; cat-
egorically, it is a path in the total space of the fibration determined
by the type family. For apd, this kind of heterogeneous equality is
necessary because f x : B(x) whereas f y : B(y).

2.2 n-types
A type A is a set, or 0-type, iff any two parallel paths in A are
equal—for any two elements m,n:A, and any two proofs p,q : m
= n, there is a path p = q. Similarly, a type is a 1-type iff any two
paths between parallel paths are equal. A type is a mere proposition,
or (−1)-type, iff any two elements are equal. A type is contractible
iff it is a mere proposition and moreover it has an element.

2.3 Univalence
Writing Type for a type of (small) types, Voevodsky’s univalence
axiom states that, for sets A and B, the paths A =Type B are given by
bijections between A and B.3 That is, define Bijection A B to be
the type of quadruples

(f : A � B, g : B � A,
p : (x : A) � g (f x) = x, q : (y : B) � f (g y) = y)

consisting of two functions that are mutually inverse up to paths.
Then one consequence of univalence is that there is a function

ua : Bijection A B � A = B

which says that a bijection between A and B determines a path be-
tween A and B. The force of this is to stipulate that all constructions
respect bijection; for example, if C[X] is a parametrized type (e.g.
C could be List, Tree, Monoid, etc.), then given a bijection b :
Bijection A B, we have

ap C (ua b) : C[A] = C[B]

which is a bijection between C[A] and C[B]. In plain MLTT, one
would need to spell out how a bijection between types lifts to a
bijection on lists or monoids over those types; with univalence, this
lifting is given by a new generic program in the form of ap. This
generic program is one of the sources of computational applications
of homotopy type theory.

We can define the identity, inverse, and composition of bijec-
tions directly (focusing on the underlying functions, and writing f2
. f1 for (λ x -> f2(f1(x))):

reflb : Bijection A A
reflb = ((\ x -> x), (\ x -> x) , ...)

!b : Bijection A B � Bijection B A
!b (f,g,p,q) = (g,f,q,p)

_◦b_ : Bijection B C � Bijection A B � Bijection A C
(f2,g2,p2,q2) ◦b (f1,g1,p1,q1) = (f2 . f1, g1 . g2, ...)

Applying path operations to univalence is homotopic to applying
the corresponding operations to bijections:

3 For types that are not sets, univalence requires a notion of equivalence that
generalizes bijection. However, here we will only use it for sets.

ua reflb = refl
! (ua b) = ua (!b b)
ua b2 ◦ ua b1 = ua (b2 ◦b b1)

When p : A = B, we write coe p : A � B for the function,
defined by identity type elimination, that “coerces” along the path
p. coe is functorial, in the sense that

coe refl x = x
coe (q ◦ p) x = coe q (coe p x)

coe p is a bijection, with inverse coe !p; we write coe-biject
p : Bijection A B when p : A = B. The univalence axiom
additionally asserts that there is a computation rule

coe (ua (f,g,p,q)) x = f(x)

That is, coercing along a path constructed by univalence ap-
plies the given bijection. Because ! (ua (f,g,p,q)) = ua (!b
(f,g,p,q)), we also have that

coe (! (ua (f,g,p,q))) x = g x

Because of these rules, in the presence of univalence, paths can
have non-trivial computational content. A bijection (f,g,p,q) de-
termines a path ua(f,g,p,q), and coercing along this path applies
f. Thus, two different bijections (f,g,p,q) and (f’,g’,p’,q’)
determine two paths ua(f,...) and ua(f’,...) that behave dif-
ferently when coerced along.

2.4 Higher Inductive Types
Ordinary inductive types are specified by generators; for example,
the natural numbers have generators zero and successor: zero :
Nat and succ : Nat � Nat. Higher-dimensional inductive types
(or just higher inductive types) [25, 26, 32] generalize inductive
types by allowing generators not only for points (terms), but also
for paths. For example, one might draw the circle like this:

base
loop

This drawing has a single point, and a single non-identity loop from
this base point to itself. This translates to a higher inductive type
with two generators:

space Circle : Type where
-- point constructor:
base : Circle
-- path constructor:
loop : base = base

base constructs an element of the inductive type (taking no argu-
ments, just like zero : Nat). loop generates a path on the cir-
cle, which is an element of the identity type base =Circle base—
think of this as “going around the circle once clockwise”. The paths
of higher inductive types are constructed from generators, such as
loop, using the path operations described above. The intuition is
that refl stands still at the base point, whereas loop ◦ loop goes
around the circle twice clockwise, and ! loop goes around the cir-
cle once counter-clockwise.

2.4.1 Circle Recursion
The fact that the type of natural numbers is inductively generated
by zero and successor is encoded in its elimination rule, primitive
recursion. Primitive recursion says that to define a function f :
Nat � X, it suffices to map the generators into X, giving x0 : X
and x1 : X � X. Then the function f satisfies the equations

f zero = x0
f (succ n) = x1(f n)



Similarly, the circle is inductively generated by base and loop,
so to define a function from the circle into some other type, it
suffices to map these generators into that type, which means giving
a point and a loop in that type. That is, to define a function f :
Circle � X, it suffices to give b’ : X and l’ : b’ =X b’.

For an inductive type, the β-reduction rules state that applying
the elimination rule to a generator computes to the corresponding
branch. Thus, by analogy, the computation rules for the circle
should say that, for a function f : Circle � X that is defined
by giving b’ and l’,

f base = b’
f loop = l’ -- does not typecheck!

The second equation does not quite make sense, because f is a
function Circle � X but loop is a path on the circle. Therefore
we use ap (defined above) to denote f’s action on paths:

ap f loop = l’

This computation rule preserves types because its left-hand side is
a proof of f base = f base, which by the first computation rule
equals b’ = b’, which is the type of l’.
EXAMPLE 2.1. As a first example, we write a function to “reverse”
a path on the circle—to send the path that goes around the circle
n times clockwise to the path that goes around the circle n times
counter-clockwise, and vice versa. Because a path on the circle is
represented by the identity type base = base, we seek a function

revPath : (base = base) � (base = base)

such that, for example, revPath (loop ◦ loop) = ! loop ◦
! loop and revPath (! loop ◦ ! loop) = loop ◦ loop.
We could define this function by revpath p = ! p, but because
the goal is to illustrate circle recursion, we instead give an equiva-
lent definition that analyzes p.

To define this function using circle recursion, we need to
rephrase the problem as constructing a function Circle � X for
some type X. The key idea is to define a function rev : Circle
� Circle and then to define revPath to be ap rev. That is, to
define a function on the paths of the circle, we define a function on
the circle itself, whose action on paths is the desired function. In
this case, we define

rev : Circle � Circle
rev base = base
ap rev loop = ! loop

revPath p = ap rev p

One technical issue about higher inductive types is whether the
computation rule ap f loop = l’ is a definitional equality or a
path/propositional equality. Current models and implementations
justify only the latter, so we will take it to be a propositional
equality. When we illustrate how programs run in this paper, we
will do it by giving a sequence of propositional equalities relating
a program to a value, so the rule still functions as a “computation”
step—as do the rules mentioned above, which state that ap behaves
homomorphically on paths built from the group operations. For
example, one can calculate

revPath (loop ◦ loop)
= ap rev (loop ◦ loop)
= (ap rev loop) ◦ (ap rev loop)
= ! loop ◦ ! loop

Just as the recursion principle for the natural numbers can be
generalized to an induction principle, the full form of the circle
elimination rule is a principle of “circle induction”: to define a de-
pendent function f : (x : Circle) � C(x), it suffices to give

b’ : C(base) and l’ : PathOver C loop b’ b’. We refer
the reader to [23, 35] for topological intuition.

3. General Patch Theory
Patch theory [7, 10, 12, 15, 16, 28] provides a general framework
for describing properties of version control systems, which allows
us to specify the behavior of patches under operations such as com-
posing, reverting and merging. Here, we formulate patch theory in
the context of homotopy type theory. This allows us to separate the
purely algebraic aspects of a version control system (the laws that
it must obey) from its implementation details (how repositories and
patches are represented). We refer to a particular algebraic charac-
terization of a version control system as a theory of version control,
or a patch theory; and to an implementation that obeys the laws of
such a theory as a model of that theory.

In a patch theory, each patch comes equipped with specified do-
main and codomain contexts, representing respectively, the reposi-
tory states on which a patch is applicable, and the states resulting
from such an application. For example, a patch that deletes a file
is applicable only to states in which the file exists, and results in
a state in which it does not. In addition, patches respect certain
laws that relate sequences of patches to equivalent sequences of
patches—equivalent, in the sense that the two sequences have the
same effect on the state of a repository.

3.1 Patch Theories as Higher Inductive Types
Homotopy type theory allows us to present a patch theory as a
higher inductive type whose structure encodes both generic aspects
of version control (such as the behavior of patches under composi-
tion) as well as the aspects particular to the given theory, specify-
ing the basic patches available and the specialized laws that these
patches obey. An advantage of this approach is that in homotopy
type theory functions are functors that necessarily preserve the path
structure of a type, so that any function we define out of the higher
inductive type representing a patch theory must validate all the laws
of that theory, and thus determines a model for it. An additional
benefit of this approach is that the metatheory of homotopy type
theory itself enforces the groupoid laws, so that we need not spec-
ify the behavior of patches and patch laws under composition—i.e.
that all compositions are associative, unital and respect inverses—
this all comes for free from the groupoid structure of higher induc-
tive types. In the following sections we will present several exam-
ples of patch theories encoded as higher inductive types, together
with interpretations for them as functors to a universe of sets.

When encoding a patch theory as a higher inductive type, patch
contexts are represented as points of the type. Patches are repre-
sented as paths between the representations of their domain and
codomain contexts, with the path operations refl, q ◦ p and !p rep-
resenting a no-op patch, patch composition, and undo, respectively.
Encoding patches as paths in a higher inductive type imposes the
requirement that they have inverses, as opposed to just retractions.
As one would expect, applying the inverse of a patch after applying
the patch itself (!p ◦ p) undoes the effect of the patch. But it is also
possible to apply the inverse patch first (p ◦ !p), to an appropriate
repository state, and this composition should also be equivalent to
doing nothing. This forces us to use some care when defining con-
texts and patches. In some cases we use inverse patches directly in
our theory, while in others they end up getting in the way and we
must work around them.

Patch laws are represented as 2-dimensional paths between
paths. Patch laws are helpful for reasoning about syntactic transfor-
mations on patches, such as an optimizer, which should compute a
patch equivalent to the one it is given, or a merge, which, given two
divergent edits, computes a pair of patches that reconciles them.



3.2 Merging
At a minimum, merging is an operation that takes a pair of di-
verging patches or span, (f1, f2), and returns a pair of converging
patches or cospan, (g1, g2), which is a reconciliation of the span in
the sense that

merge(f1, f2) = (g1, g2) =⇒ g1 ◦ f1 = g2 ◦ f2 :

A

B C

D

f1

g1

f2

g2

In order to support distributed version control systems, we will
further require that the merge operation be symmetric,

merge(f1, f2) = (g1, g2) =⇒ merge(f2, f1) = (g2, g1)

so that your reconciliation of my changes with your changes agrees
with my reconciliation of your changes with my changes.

Depending on the circumstances, we may wish to impose other
laws on merge as well. For example, in the patch theory underlying
the distributed revision control system Darcs[12, 31], the merge
operation is required to respect patch inverses in the sense that,

merge(f1, f2) = (g1, g2) =⇒ merge(g1, !f1) = (!g2, f2)

A symmetric reconciliation with this property is equivalent to—
indeed, the categorical mate of—an operation known as pseudo-
commutation, which is the primitive operation in terms of which
the other operations of Darcs’ patch theory are defined.

It is always possible to define a total merge function, since for
any span we may give merge(f1, f2) = (!f1, !f2), the reconcilia-
tion that undoes both changes. This can be used to signal a merge
conflict, a situation in which we are unable to automatically recon-
cile the competing changes in a sensible way, and for which human
intervention is required.

It is important to realize that a merge function that is a symmet-
ric reconciliation need not respect the groupoid structure of a higher
inductive type. For example, we may define merge recursively by
tiling, that is, define

merge (g ◦ f , h) = (h’’ , g’ ◦ f’)
where

(h’ , f’) = merge (f , h)
(h’’ , g’) = merge (g , h’)

A

B C

D E

F

f h

g

h′ f ′

h′′ g′

If we define merging a patch with a no-op and merging a patch
with itself by

merge (f , refl) = (refl , f)
merge (f , f) = (refl , refl)

then under the assumption that f conflicts with h, merging (!f ◦
f , h) by tiling results in a conflict, whereas first performing the
composition yields (h , refl).

Nevertheless, we may still define merge recursively by quoti-
enting syntactic paths by the groupoid and domain-specific patch
laws, and choosing a canonical representative for each class. For

example, in a theory without any domain-specific laws, we may
normalize (z ◦ (refl ◦ y)) ◦ ((x ◦ !w) ◦ w) to z ◦ y ◦
x, with a canonical association. In the presence of domain-specific
laws, these would need to be taken into account as well. We will
make use of this technique in section 6.

Next, we present several examples of patch theories as higher
inductive types. We show how to implement their semantics, and
additionally some examples of patch optimization and merging, to
illustrate syntactic transformations.

4. An Elementary Patch Theory
First, we define a very simple language of patches, to illustrate the
basic technique: we take the repository to be a single integer, and
the patches to be adding or subtracting some number n from it.
Because all patches apply to any repository state, we need only a
single patch context, which we call num. Patches will then be rep-
resented as paths num = num, which represents the fact that every
patch can be applied to context num and results in context num.
Suppose we have a patch add1 that represents adding 1 to the
repository. Then, because paths can be constructed from identity,
inverses, and composition, we also have paths refl, which rep-
resents adding 0, and add1 ◦ add1, which represents adding 2,
and ! add1, which represents subtracting 1, and so on. In fact, the
patches adding n for any integer n are generated by add1, because
the integers are the free group on one generator. This motivates the
following higher inductive definition of this simple Repository and
its patches:

space R : Type where
-- point constructor (patch context):
num : R
-- path constructor (basic patch):
add1 : num = num

This is, of course, just a renaming of the circle!
REMARK 4.1. By presenting it using a higher inductive type, the
patch theory automatically includes identity, inverses, and com-
position. Without higher inductive types, one would need syntax
constructors for identity, composition, and inverses; e.g. using a
datatype as follows:

data Patch where
add1 : Patch
id : Patch
compose : Patch � Patch � Patch
inv : Patch � Patch

Then, to achieve the correct equational theory of patches, one
would need to impose the group laws on this type; this could be
done using a quotient type [8] to assert that

assoc : compose r (compose q p) = compose (compose r q) p
invr : compose p (inv p) = id
invl : compose (inv p) p = id
unitr : compose p id = p
unitl : compose id p = p

By representing a patch theory as a higher inductive type, the group
operations and laws are provided by the ambient type theory, so the
definition need not include these boilerplate constructors.

4.1 Interpreter
Next, we define an interpreter, which explains how to apply a patch
to a repository. Because the intended semantics is that the reposi-
tory is an integer, we would like to interpret the repository context
num as the type Int of integers. Because patches are invertible,
we would like to interpret each patch as an element of the type
Bijection Int Int.



REMARK 4.2. To build intuition, consider writing the interpreter
“by hand”, for the quotient type Patch defined in Remark 4.1,
which includes constructors for identity, inverse, and composition.
We would first define:

interp : Patch � Bijection Int Int
interp add1 = successor
interp id = reflb
interp (compose p2 p1) = interp p2 ◦b interp p1
interp (inv p) = !b (interp p)

where successor : Bijection Int Int is the bijection given
by (\ x � x + 1, \ x � x - 1, ...) Then, to show that
this definition is well-defined on the quotient of patches by the
group laws, we would need to do a proof with 5 cases for the 5
group laws, where in each case we appeal to the inductive hypothe-
ses and the corresponding group law for bijections.

Returning to our higher-inductive representation of patches, we
define the interpreter using the recursion principle for R, which is
of course the same as circle recursion, as discussed in Section 2.
We want to interpret each point of R, which represents a repository
context, as the type of repositories in that context, and each path as a
bijection between the corresponding types. In this case, that means
we would like to interpret num as Int and add1 as the successor
bijection. R-recursion says that to define a function f : R � X, it
suffices to find a point x0 : X and a loop p : x0 = x0. Thus, we
can represent the interpretation by a function R � Type, because
a point of Type is a type, and a loop in Type is, by univalence, the
same as a bijection! This motivates the following definition:

I : R � Type
I num = Int
ap I add1 = ua (successor)

interp : (num = num) � Bijection Int Int
interp p = coe-biject (ap I p)

Up to propositional equality, this definition satisfies the defin-
ing equations of interp as defined in Remark 4.2. First, we can
calculate that interp add1 = successor,

interp add1
= coe-biject (ap I add1) [definition]
= coe-biject (ua successor) [ap I on add1]
= successor [coe on ua successor]

using the computation rules for ap I on add (from higher inductive
elimination) and coe on ua b (from univalence).4

Moreover, interp takes path operations to the corresponding
operations on bijections, because it is defined via ap, and ap pre-
serves the path operations. For example,

interp (q ◦ p)
= coe-biject (ap I (q ◦ p))
= coe-biject (ap I q ◦ ap I p) [ap on ◦]
= coe-biject (ap I q) ◦b (coe-biject (ap I p))
= interp q ◦b interp p

interp refl = reflb and interp (! p) = !b (interp b)
are similar. That is, the semantics is functorial.

For example, if we apply5 a patch add1 ◦ !add1 to a reposi-
tory whose contents are 0, we have

(interp (add1 ◦ ! add1)) 0
= ((interp add1) ◦b interp (! add1)) 0
= ((interp add1) ◦b !b (interp add1)) 0
= (successor ◦b !b successor) 0
= successor (!b successor 0)

4 We also use that fact that two bijections are equal iff their underlying
functions are equal, because inverses are unique up to homotopy.
5 We elide the projection from Bijection A B to A � B.

= successor -1
= 0

Comparing this definition of interp with Remark 4.2, we see
that the recursion principle for the higher-inductive representation
of patches provides an elegant way to express the semantics of a
patch theory, where much of the code in Remark 4.2 is provided
“for free”. We needed to give only the key case for add1, and
not the inductive cases for the group operations—the semantics of
the basic patches is automatically lifted functorially to the patch
operations. Moreover, we did not need to prove that bijections
satisfy the group laws—this fact is necessary for the univalence
axiom to make sense, so it is effectively part of the metatheory of
homotopy type theory, rather than of our program. This example
illustrates that univalence can be used to extract computational
content from a path, by mapping the path into a path in the universe,
which by univalence can be given by a bijection.

Because R is the circle, one may wonder about the topological
meaning of this interpreter. In fact, the type family I defined here
is called the universal cover of the circle, and is discussed further
in [23, 35]. interp computes what is called the winding number
of a path on the circle, which can be thought of as a normal form
that counts how many times that path goes around the circle, after
“detours” such as loop ◦ ! loop have been reduced.

It is also worth noting that, although we were thinking of num
as an integer and add1 as successor, there is nothing forcing this
interpretation of the syntax: we can give a sound interpretation I in
any type with a bijection on it. For example,

I’ : R � Type
I’ num = Bool
ap I’ add1 = ua notb

where notb : Bijection Bool Bool = (not , not , ...).
That is, we interpret the patches in Bool instead of Int, and we
interpret add1 as adding 1 modulo 2. This semantics satisfies addi-
tional equations that are not reflected in the theory, such as

ap I’ add1 ◦ ap I’ add1 = ua (notb ◦b notb) = refl

In the next section we show how to augment a patch theory with
equations such as these—but doing so would of course rule out
the previous semantics in Int, because adding 1 to an integer is
not self-inverse. The equational theory of R is complete for the
interpretation as Int, which in homotopy theory is known as the
fact that the fundamental group of the circle is Z (see [23, 35]).
The idea that we can have multiple models of a patch theory (I
and I’) will be exploited in Section 6, when we give a “logging”
interpretation that produces a data representation of what happens
when a patch is evaluated.

4.2 Merge
Next we implement a merge operation, which satisfies the laws dis-
cussed in Section 3. Writing Patch for doc = doc, and specializ-
ing the interface to the setting where we have only one context, we
need to implement the following:

merge : Patch × Patch � Patch × Patch
reconcile : (f1 f2 g1 g2 : Patch)

� merge (f1 , f2) = (g1 , g2)
� g1 ◦ f1 = g2 ◦ f2

symmetric : (f1 f2 g1 g2 : Patch)
� merge (f1 , f2) = (g1 , g2)
� merge (f2 , f1) = (g2 , g1)

In this simple setting, any two patches commute, essentially
because addition is commutative. Thus, we define

merge(f1 , f2) = (f2 , f1)



For symmetric, because g1 = f2 and g2 = f1, we need to show
that merge (f2,f1) = (f1,f2), which is true by definition.

For reconcile, we need to prove that f2 ◦ f1 = f1 ◦ f2,
for any two loops num = num on the circle—the group of loops
on the circle is abelian. It is not immediately obvious how to do
this, because homotopy type theory does not provide a direct in-
duction principle for the loops in a type. That is, there is no built-in
elimination rule that allows one to, for example, analyze a loop f
as either add1, or the identity, or an inverse, or a composition—
because such a case-analysis would additionally need to respect all
equations on paths, which differ from type to type. Instead, such
induction principles for paths are proved for each type from the
basic induction principles for the higher inductive types—roughly
analogously to how, for the natural numbers, course-of-values (or
strong) induction is derived from mathematical induction. More-
over, proving these induction principles is sometimes a significant
mathematical theorem. In homotopy theory, it is called calculat-
ing the homotopy groups of a space, and even for spaces as simple
as the spheres some homotopy groups are unknown. However, we
have developed some techniques for calculating homotopy groups
in type theory [19, 20, 23, 35], which can be applied here.

For this particular example, the calculation has already be done:
we know that the fundamental group of the circle is Z. Specifically,
we know that the type num = num of loops at num, which we use
to represent patches, is in bijection with Int. That is, the integers
give canonical representatives (“add x, for x ∈ Z”) for equivalence
classes of patches in the above patch theory, considered modulo the
group laws. This is proved by giving functions back and forth that
compose to the identity. The function encode : num=num � Int
is exactly λ p � interp p 0, for interp p as defined above.
The function repeat : Int � num=num is defined by induction
on the Int, viewing Int as a datatype with three constructors, 0;
+ n (where n itself is positive) representing positive n; and - n
(where n itself is positive) representing negative n.

repeat 0 = refl
repeat (+ n) = add1 ◦ add1 ◦ ... ◦ add1 [n times]
repeat (- n) = !add1 ◦ !add1 ◦ ... ◦ !add1 [n times]

The proof that encode and repeat are mutually inverse is de-
scribed in [23, 35]. Moreover, they define a group homomorphism,
which means that repeat (x + y) = repeat x ◦ repeat y.

The bijection between num=num and Int induces a derived
induction principle, which says that to prove P(p) for all paths
p:num=num, it suffices to prove P(repeat n) for all integers n—
any patch can be viewed as repeat n for some n. Applying this
(twice) to the goal f2 ◦ f1 = f1 ◦ f2, it suffices to show

repeat x ◦ repeat y = repeat y ◦ repeat x

This is proved as follows:

repeat x ◦ repeat y
= repeat (x + y) [group homomorphism]
= repeat (y + x) [commutativity of addition]
= repeat y ◦ repeat x

Thus, for this language of patches, the correctness of merge
follows from the fact that the fundamental group of the circle is Z—
our first example of a software correctness proof being a corollary
of a theorem in homotopy theory!

One further point to note is that, in this example, we were able
to define merge without converting paths to integers, while to prove
the reconciliation property we needed to reason inductively, using
canonical representatives of group-law-equivalence-classes. This is
because all patches commute, so we can define merge(x,y) =
(y,x) without analyzing the structure of patches. In more inter-
esting settings, such as Section 6, we will need to make use of such
representatives to define the merge function itself. To illustrate this,

we give an alternate definition of merge, called merge’, which uses
a helper function mergeI that recursively swaps two integers; writ-
ing the code in this way illustrates a method for defining merge
by chosing canonical representatives for paths and then analyzing
these representatives.

merge’(p,q) =
let (a,b) = mergeI(encode p, encode q)
in (repeat a , repeat b)

mergeI : Int × Int � Int × Int
mergeI(+ (1+x) , - (1+y)) =

let (a , b) = mergeI (+ x , - y)
in (a-1 , b+1)

...

The function merge’ is defined by converting the given paths p and
q (which are considered up to the group laws, such as associativity)
to chosen representatives, integers. Paths that are equal according
to the group laws are sent to equal representatives; e.g. both (add1
◦ add1) ◦ add1 and add1 ◦ (add1 ◦ add1) are sent to 3. We
may then compose this choice of representatives with any function
we want — including functions that do not themselves respect the
group laws, as merge in general might not (see Section 3) — and
the overall composite still respects the group laws. In this case,
we compose with a function mergeI that case-analyzes the given
integers, and recursively “merges” the two numbers with cases such
as the one given above. This case copies a positive successor on the
left to a positive successor on the right, and a negative successor on
the right to a negative successor on the left—think of it as merging
“add 1 and then do x” with “subtract 1 and then do y” by merging
x and y and then moving the “add 1” to the right and the “subtract
1” to the left. Finally, once mergeI has computed the merge of
two chosen representatives, merge’ calls repeat to convert the
resulting integers back to paths. One can prove by induction that
mergeI(x,y) = (y,x); and encode and repeat are mutually
inverse, so merge’ agrees with the original definition of merge.

5. A Patch Theory with Laws
In this section, we consider a slightly more complex patch theory,
to illustrate how patch laws are handled. In the intended semantics
of this theory, the repository consists of one document with a fixed
number n of lines, and there is one basic patch, which modifies the
string at a particular line. To fit this into a framework of bijections,
we take the patch s1 ↔ s2 @ i to mean “permute s1 and s2 at
position i”. That is, applying this patch replaces line i with s2 if
it is s1, or with s1 if it is s2, or leaves it unchanged otherwise. We
impose some equational laws on this patch—e.g., edits at indepen-
dent lines commute. We consider an interpretation function I and
a simple patch optimizer; we do not consider merge in this section,
because we discuss it for the more general language in Section 6.

5.1 Definition of Patches
This patch theory is represented by the following higher inductive
type:

space R : Type where
-- point constructor (patch context):
doc : R
-- path constructor (basic patch):
_↔_@_ : (s1 s2 : String) (i : Fin n) � (doc = doc)
-- path-between-path constructors (patch laws):
indep : (s t u v : String) (i j : Fin n) � (i 6= j) �

(s ↔ t @ i) ◦ (u ↔ v @ j)
= (u ↔ v @ j) ◦ (s ↔ t @ i)

noop : (s : String) (i : Fin n) s ↔ s @ i = refl



doc should be thought of as a document with n lines (for some n
fixed throughout this section). The path constructor s1 ↔ s2 @
i represents the basic patch, swapping s1 and s2 at line number
i. Fin n is the type of natural numbers less than n, which we
interpret here as line numbers in an n-line document (where we
start numbering at 0).

For this language there are some non-trivial patch laws, which
are represented by giving generators for paths between paths; we
show two as an example. The equation noop states that swapping s
with s is the identity for all s; this is useful for justifying a simple
optimizer, which optimizes away the two string comparisons that
executing s ↔ s @ i would require. The equation indep states
that edits to independent lines commute; this is useful for defining
merge (x 6= y is the negation of x = y, i.e. (x = y) � void).

Because R is our first example of a type with both paths and
paths between paths, we go over its recursion and induction princi-
ples in detail. To define a function f : R � X, it suffices to give

doc’ : X
swap’ : (s1 s2 : String) (i : Fin n) � doc’ = doc’
indep’ : (s t u v : String) (i j : Fin n) � i 6= j

� swap’ s t i ◦ swap’ u v j
= swap’ u v j ◦ swap’ s t i

noop’ : (s : String) (i : Fin n)
� swap’ s s i = refl

and then we have the following computation rules

f(doc) = doc’
β1 : ap f (s ↔ t @ i) = swap’ s t i
β21 : PathOver (x . x = refl) β1

(ap (ap f) (noop s i))
(noop’ s i)

β22 : PathOver (x,y. x ◦ y = y ◦ x) (β1, β1)
(ap (ap f) (indep s t u v i j neq))
(indep’ s t u v i j neq)

The first computation rule is in fact a definitional equality, while the
second is a path. The well-typedness of the third computation rule,
which says roughly that ap (ap f) (noop s i) equals (noop’
s i), depends on the second computation rule, β1. This is be-
cause ap (ap f) (noop s i) has type ap f (s ↔ s @ i) =
ap f refl, but noop’ has type swap’ s s i = refl. While ap
f refl is definitionally equal to refl, ap f (s ↔ s @ i) is
only propositionally equal to swap’ s s i by β1. Thus, we use
the PathOver type state them, which allows for a heterogeneous
equality. We will use clausal function notation for maps out of R,
but keep in mind that the types of the right-hand sides of the equa-
tions are those of doc’ and swap’ and indep’ and noop’ above,
which (in the latter two cases) are only propositionally equal to the
types of the left-hand sides.

The induction principle for R states that to define a function f :
(x : R) � C(x), it suffices to give

• c’ : C(doc)
• s’ : PathOver C (s1 ↔ s2 @ i) c’ c’
• A 2-dimensional path over a path as the image of indep.
• A 2-dimensional path over a path as the image of noop.

We omit the details of the final two, which are not used below.

5.2 Interpreter
Because patches are represented by the type doc = doc, the inter-
preter for patches is a function

interp : (doc = doc)
� Bijection (Vec String n) (Vec String n)

As above, we generalize this to an interpretation of the whole patch
theory R, and define a function I : R � Type such that

interp p = coe-biject (ap I p)

To interpret the basic patch s1 ↔ s2 @ i, we need a cor-
responding bijection that permutes two strings at a position in a
length-n vector of strings, represented by the type Vec String n.
permute : (String × String) � String � String
permute (s1,s2) s | String.equals (s1,s) = s2
permute (s1,s2) s | String.equals (s2,s) = s1
permute (s1,s2) s | _ = s

applyat : (A � A) � Fin n � Vec A n � Vec A n
applyat f i <x1,...xn> = <x1,...,f xi,...,xn>

swapat : (String × String) � Fin n
� Bijection (Vec A n) (Vec A n)

swapat (s1,s2) i = (applyat (permute (s1,s2)) i, ...)

The interpretation I is defined as follows:
I : R � Type
I doc = Vec String n
ap I (s1 ↔ s2 @ i) = ua (swapat (s1,s2) i)
ap (ap I) (indep s t u v i j i6=j) =

GOAL0 : ua(swapat(s,t) i) ◦ ua(swapat(u,v) j)
= ua(swapat(u,v) j) ◦ ua(swapat(s,t) i)

ap (ap I) (noop s i) = GOAL1 : ua(swapat(s,s) i) = refl

We interpret doc as Vec String n. The image of s1 ↔ s2 @ i
must be a path in Type between I(doc) and I(doc)—i.e. between
Vec String n and itself. For this, we choose the bijection swapat
(s1,s2) i, packed up as a path in the universe using the univa-
lence axiom. The metavariables GOAL0 and GOAL1 represent goals,
that is, terms that must still be provided before the proof/program
is complete. The image of indep and noop are the goals GOAL0
and GOAL1, with the types written out above—which say that we
need to validate the patch laws for the interpretation. These goals
can be solved by equational properties of bijections, combined with
the rules about the interaction of univalence with identity and com-
position described in Section 2. For example, GOAL1 is solved by
observing that swapat(s,s) i is the the identity bijection, and
then using the fact that ua reflb = refl. GOAL0 is solved by
turning both sides into a composition of bijections using the fact
that ua b2 ◦ ua b1 = ua (b2 ◦b b1) , and then proving the
corresponding fact about swapat:
swapat-independent :

(i 6= j) � (swapat (s,t) i) ◦b (swapat (u,v) j)
= (swapat (u,v) j) ◦b (swapat (s,t) i)

As above, we do not need to give cases for the group operations
or prove the group laws—these come for free, from functoriality.

5.3 Optimizer
To illustrate using the patch laws, we write a simple optimizer
optimize : (p : doc = doc) � Σ (q : doc = doc). p = q

The type of optimize says that it takes a patch p and produces
a patch q that behaves the same, according to the patch laws, as
p. The goal is to optimize s ↔ s @ i to refl, saving ourselves
two unnecessary string comparisons when the patch is applied. The
optimizer requires analyzing the syntax of patches.

We show two definitions of optimize, to illustrate some differ-
ent aspects of programming in homotopy type theory.

Program then prove. In this definition, we first write a func-
tion optimize1 : doc=doc � doc=doc, and then prove that
this function returns a path that is equal, according to the patch
laws, to its input. The idea is to apply the following function opt0
to each patch s1 ↔ s2 @ i:
opt0 : String � String � Fin n � doc=doc
opt0 s1 s2 i = if String.equals s1 s2



then refl
else (s1 ↔ s2 @ i)

To define optimize1, we generalize the problem to defining a
function opt1 that acts on all of R, and then derive optimize1 as
its action on paths (the same technique as reversing the circle in
Section 2.1). This is defined as follows:

opt1 : R � R
opt1 doc = doc
ap opt1 (s1 ↔ s2 @ i) = opt0 s1 s2 i
ap (ap opt1) (noop s i) =

GOAL0 : opt0 s s i = refl
ap (ap opt1) (indep s t u v i j i6=j) =

GOAL1 : opt0 s1 s2 i ◦ opt0 s3 s4 j
= opt0 s3 s4 j ◦ opt0 s1 s2 i

We map doc to doc, and apply opt0 to s1 ↔ s2 @ i. However,
to complete the definition, we must show that the optimization re-
spects the patch laws, via the goals GOAL0 and GOAL1 whose types
are given above. The goal GOAL0 is true because String.equals
s s will be true, so, after case-analysis, refl proves that opt1
s s i = refl. The goal GOAL1 requires case-analyzing both
String.equals s1 s2 and String.equals s3 s4. If both are
true, the goal reduces to refl ◦ refl = refl ◦ refl, which is
true by refl. If the former but not the latter is true, the goal reduces
to refl ◦ s3 ↔ s4 @ j = s3 ↔ s4 @ j ◦ refl, which is
true by unit laws. The third case is symmetric. Finally, if neither
are true, then the goal holds by indep.

Next, we prove this optimization correct using R-induction:

opt1-correct : (x : R) � x = opt1 x
opt1-correct doc = refl
apd opt1-correct (s1 ↔ s2 @ i) =

GOAL0 : PathOver (x. x = opt1 x) (s1 ↔ s2 @ i) refl refl
apd (apd opt1-correct) (noop s i) = GOAL0
apd (apd opt1-correct) (indep s t u v i j i6=j) = GOAL1

In the case for doc, we need to give a path doc = opt1 doc,
but opt1 doc is doc, so we give refl. In the case for s1 ↔
s2 @ i, the induction principle requires an element of the type
listed above. It turns out that, by rules for PathOver, this type is
equivalent to

s1 ↔ s2 @ i = opt0 s1 s2 i

So this is where we prove that opt0 preserves the meaning of a
patch. This requires two cases: when s1 is equal to s2, we use
noop; when it is not, we use refl.

The remaining two cases require proving that this proof of
correctness of opt respects the patch laws. In each case, the goal
asks us to prove the equality of two proofs of equality of patches.
That is, the goal has the form

f1 =p=doc=docq f2

where p and q are two patches, and f1 and f2 are two proofs that
these two patches are equal—which homotopically can be thought
of as paths-between-paths, or, in more geometrically evocative
terminology, as faces between edges.

One might think that such a goal would be trivial, because f1
and f2 are representing proofs that two patches are equal accord-
ing to the patch laws, and we think of patch equality as a proof-
irrelevant relation. But for the definition we have given above, there
is nothing that actually forces any two such faces to be identi-
fied. For example, we can compose indep i6=j ◦ indep j6=i, a
proof that (s ↔ t @ i) ◦ (u ↔ v @ j) is equal to itself, but
there is no reason that this proof, which swaps twice, is necessarily
the identity. Thus, although we have not considered any applica-
tions of this so far, we could potentially consider proof-relevant

identifications between patches—proof-relevant patch laws. If we
wished to do so, then these goals would need to be proven.

However, if we do not wish to consider proof-relevant patch
equations, we can make these goals trivial by a technique called
truncation [35, Chapter 7]. In this case, this means adding another
constructor to R of type

-- path-between-path-between-path constructor
(all proofs of patch laws are equal)

trunc : (x y : R) (p q : x = y) (f1 f2 : p = q)
� f1 = f2

This constructor adds a path between any two faces f1 and f2—
which allows the above goals to be solved. The price for truncating
is that functions defined by R-recursion/induction are only permit-
ted when the result is also a 1-type. Fortunately, we can still de-
fine opt1 with this restriction (because R is a 1-type), as well as
opt1-correct (because paths in a 1-type are a 0-type, and there-
fore a 1-type) and the function I used for interp (because it in-
terprets the point of R as a set, and the collection of all sets is a
1-type). Thus, truncating R would be an appropriate and helpful
modification in this case.

Program and prove. An alternative, which requires neither trun-
cation nor proving any equations between faces, is to simultane-
ously implement the optimizer, and prove that it returns a patch
equal to its input. To define

optimize : (p : doc = doc) � Σ (q : doc = doc). p = q

we need to define a function on all of R, and derive optimize via
its action on paths. However, optimize is dependently typed, and
ap f for a simply-typed function f never has such a dependent
type. Thus, we define a dependently typed function and use the
dependent form of ap, apd. Specifically, we define

opt : (x : R) � Σ (y : R). y = x

This type has the same shape as the type of optimize above,
except it is at the level of the points of R rather than the paths.
Its action on paths has the following type:

apd opt (p : doc = doc) :
PathOver (x. Σy:R. y = x) p (opt doc) (opt doc)

When the family B is known, the type PathOver B p b1 b2 can
be “reduced” (via propositional equalities) to another type. In the
case where B is x.Σ (y:R.y = x), as above, the rules for path-
over-a-path in Σ-types, constant families, and path types, yield an
identification e as follows:6

e : PathOver (x. Σy:R. y = x) p (doc,refl) (doc,refl)
= Σ (q : doc = doc). p = q

Thus, if we define opt such that

opt doc = (doc , refl)

then

6 This is because a path over a path in a Σ-type is a path-over-a-path in
each component (the second over the first), because a path-over-a-path in a
constant family x.R is just a path in R, and a path-over-a-path in the identity
type is a square in the underlying type—specifically, PathOver (x,y. y
= x) (p,q) (refl,refl) is a square

p

refl

refl

q

which is the same as a path between p and q (this is what motivates the
choice of (doc,refl) and (doc,refl) as the endpoints of the path-over-
a-path).



apd opt (p : doc = doc) :
PathOver (x. Σy:R. y = x) p (doc , refl) (doc , refl)

and we can define optimize by composing this with e:

optimize : (p : doc = doc) � Σ (q : doc = doc). p = q
optimize p = coe (! e) (apd opt p)

This reduces the problem to defining opt, which we do as
follows:

opt doc = (doc, refl)
opt (s1 ↔ s2 @ i) = coe e

(if String.equals s1 s2
then (refl , noop s1 i)
else (s1 ↔ s2 @ i , refl))

ap (ap opt) _ = <contractibility>

We set opt doc = (doc , refl), as motivated above. For the
second clause, we need a

PathOver (x. Σy:R. y = x) p (doc , refl) (doc , refl)

By e, it suffices to give a

Σ (q : doc = doc). (s1 ↔ s2 @ i) = q

Thus, this is where we put the key step that we wanted to make,
which is optimizing s1 ↔ s2 @ i to refl when the strings are
equal, and leaving the patch unchanged otherwise—and pairing
each with a proof that it is equal to s1 ↔ s2 @ i.

For each of the noop and indep cases, we need to give a
face between two specific paths between two specific points in the
type Σ y:R. y = x (for some x). However, the type Σ y:R.x
= y is in fact contractible—it is equivalent to unit. Intuitively,
any pair (y,p) can be continuously deformed to (x,refl) by
sliding y along p; see [35, Lemma 3.11.8]. The identity types of
any contractible type are mere propositions, so any two paths are
connected by a face. Thus, because we formulated the problem as
mapping into a contractible type, the remaining goals are trivial.

This definition of opt, consisting of only the three cases given
above, is shorter than our previous attempt. Moreover, for com-
parison, suppose we instead wrote this optimizer for a datatype of
patches that included identity, inverses, and composition as con-
structors (analogous to the one in Remark 4.1). Then, in addition to
giving the key case for optimizing s1 ↔ s2 @ i, we would need
to give inductive cases describing how the optimizer acts on iden-
tity, inverses, and composition. Here, because the optimizer can be
defined as a group homomorphism, we need to give only the “in-
teresting” case; the inductive cases are provided by the framework.

Singleton Types and Computation Because the type Σ(y:A).x
= y is contractible, we can think of it as a singleton type, written
S(x). It consists of “everything in A that is equal to x,” or, more
precisely, a point in A with a path to x. One may well wonder what
is the point of writing a function into a contractible type? Using the
singleton notation we have

optimize : (p : doc = doc) � S(p).

Because S(p) is contractible, and hence equivalent to unit, isn’t
this just a triviality? The answer is “no” because even if two el-
ements of a type are connected by a path (and hence cannot be
distinguished by any other operation of type theory), the type nev-
ertheless has meaningful computational content in that we may ob-
serve its output when it is run and thereby make distinctions that
are obscured within the theory.

Thus, even though the optimize function that we wrote above
is equal (i.e., homotopic) to the function that simply returns p
itself—or, indeed, any other function with that type—we ex-
pect, based on work on the computational interpretation of ho-
motopy type theory, that it will in fact compute appropriately—e.g.
optimize (s ↔ s @ i) will in fact return refl because of the

way it is programmed. This is consistent with prior experience
with, for example, function extensionality in type theory [3]. A
higher-order computation will compute a particular function, not
any function with the same graph; computation does not respect
extensional equality of functions.

6. A Patch Theory With Richer Contexts
In the previous section we considered patches of the form s1 ↔
s2 @ i, which naturally induce total bijections on the type of n-
line documents. In Section 5, we exploited this fact to model these
patches as paths in a higher inductive type, using univalence to
map them to bijections on Vec String n. Now we will consider a
richer language of patches—inserting a string s as the lth line in a
file (ADD s@l), and removing the lth line of a file (RM l).These
patches only make sense in certain situations. For example, the
only patch applicable to an empty file is ADD s@0; to the resulting
file we may apply one of ADD s’@0, ADD s’@1, or RM 0, which
respectively add s’ before or after s, or deletes s.

A suitable patch theory must express such constraints on com-
position using contexts. More than one context is required, because
not all patches are composable with one another. For example, it
makes sense to classify repositories by the number of lines they
contain so that removal from an empty file is ruled inadmissible
by the patch theory. This may be achieved by defining the contexts
(the points of R) to be of the form doc n, where n is of type Nat.
The patch that adds a line is, generally in n, a path in R witnessing
doc n = doc n+1. Similarly, the patch that deletes a line is a path
in R witnessing doc n+1 = doc n. Although this formulation ex-
presses necessary constraints on the use of the primitive patches, it
fails to admit the obvious interpretation of doc n as the type of n-
line files, Vec n String. The difficulty is that the type theory de-
mands that the interpretation respect paths, and we have doc n =
doc n+1 in R, yet the types Vec n String and Vec n+1 String
are not bijective, and hence are not equated by univalence.

To motivate what follows, let us observe that we may expect
there to be an “initial” context describing the empty repository,
the initial state of a repository. Because there is only one empty
repository, the empty file, we would expect the interpretation of
the initial context to be a contractible type whose element is the
empty file. Moreover, we would expect there to be a path from the
initial context to every other context, based on the idea that it should
be possible to reach every repository state by some sequence of
patches. Thus, every context would be equal to the initial context,
and by functoriality and univalence all contexts must be modeled
by a contractible type.

Given that the interpretation of a context should be a type con-
taining repository files as elements, its contractibility, together with
univalence, suggest that each context be modeled by the single-
ton type, S(file), containing only the file in question. But if the
meaning of a context is to be such a singleton, the context must es-
sentially determine the contents of the repository. The obvious way
to achieve this is to consider contexts of the form doc n file,
where n is, as before, the number of lines, and file is a file of that
length, an element of Vec n String. The patch ADD s@l would
then be a path doc n file = doc n+1 file’, where file’ is
the result of adding s at line l in file, and similarly for RM l. We
can interpret doc n file as S(file) functorially, because any
two singletons, being contractible, are equivalent types, and hence
equal by univalence.

The trouble with this formulation is that it intermixes the ab-
stract theory of patches with its concrete realization as a file. Al-
though we reject it as a solution, it does suggest another, more
satisfactory, formulation. The main idea is that the contexts need
only determine the contents of the repository, not literally contain
them, in order to construct the singletons model. This is achieved



by indexing contexts by patch histories, which are sequences of
composable patches applicable to files of a given length. With re-
spect to any particular realization of patches, a history applicable to
the empty file uniquely determines the resulting file’s contents. As
an added benefit, histories also reify sequences of patches in a way
which facilitates certain operations on repositories, such as moving
forward or backward in time.

Patch contexts may be understood as types for patches, limiting
how they may be composed, and we expect these to be erasable at
run-time. This will require us to compute views of identity types
that are more amenable to computation, similarly to the way in
which we used the characterization of the loop space of the circle
in Section 4.

6.1 Definition of Patches
Let History m n be the type of patch histories (sequences of
patches) applicable to m-line files which result in n-line files. We
will define History m n as a quotient higher inductive type to
equate sequences of patches which result in the same changes to
a file. For example, two additions in sequence can be commuted if
the line numbers are shifted.

space History : Nat � Nat � Type where
-- point constructors:
[] : History m m
ADD_@_::_ : {m n : Nat} (s : String) (l : Fin n+1) �

History m n � History m n+1
RM_::_ : {m n : Nat} (l : Fin n+1) �

History m n+1 � History m n
-- path constructors:
ADD-ADD-< : {m n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History m n) � l1 < l2 �
(ADD s2 @ l2 :: ADD s1 @ l1 :: h)

= (ADD s1 @ l1 :: ADD s2 @ (l2-1) :: h)
ADD-ADD-≥ : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History m n) � l1 ≥ l2 �
(ADD s2 @ l2 :: ADD s1 @ l1 :: h)

= (ADD s1 @ l1+1) :: ADD s2 @ l2 :: h)

(For the sake of clarity we have omitted some coercions be-
tween different Fin types.) To simplify the code in the remainder
of this section, we have omitted the paths commuting ADD-RM, RM-
ADD, and RM-RM, which can be defined in exactly the same way.

Histories applicable to the empty file (elements of History 0
n) uniquely identify files because the history can be “replayed”
from the start. These complete histories will serve as the patch
contexts in this language—the domain of a patch is a complete
history identifying a file to which the patch is applicable, and the
codomain is the domain history extended by the patch which was
just applied.

space R : Type where
-- point constructor:
doc : {n : Nat} � History 0 n � R
-- path constructors:
addP : {n : Nat} (s : String) (l : Fin n+1)

(h : History 0 n) � doc h = doc (ADD s@l :: h)
rmP : {n : Nat} (l : Fin n+1)

(h : History 0 n+1) � doc h = doc (RM l :: h)

Next, we would like to insert faces equating commuting se-
quences of patches, but our definition of histories means that no dif-
fering sequences of paths will ever be parallel! For example, when
l1 < l2, the two paths

addP s2 l2 ◦ addP s1 l1
: h = ADD s2@l2 :: ADD s1@l1 :: h

addP s1 l1 ◦ addP s2 (l2-1)
: h = ADD s1@l1 :: ADD s2@(l2-1) :: h

ought to be “equal” as patches, but it does not even make type sense
to state this equation. We rely on the fact that histories are quo-
tiented by the same commutation laws—that is, we already equated
those exact elements of History 0 n with the path ADD-ADD-<.
Therefore, we can stipulate that the above two paths are equal over
the ADD-ADD-< equation from History 0 n, with respect to the
type family x.h = x. Thus the faces of R are defined as follows:

addP-addP-< : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)
(s1 s2 : String) (h : History 0 n) � l1 < l2 �
PathOver (x.doc h = doc x) ADD-ADD-<

(addP s2 l2 ◦ addP s1 l1)
(addP s1 l1 ◦ addP s2 (l2-1))

addP-addP-≥ : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)
(s1 s2 : String) (h : History 0 n) � l1 ≥ l2 �
PathOver (x.doc h = doc x) ADD-ADD-≥

(addP s2 l2 ◦ addP s1 l1)
(addP s1 (l1+1) ◦ addP s2 l2)

6.2 Interpreter
Assume we have functions add and rm which implement our
patches on concrete vectors of Strings.

add : {n : Nat} (s : String) (l : Fin n+1)
� Vec String n � Vec String n+1

rm : {n : Nat} (l : Fin n+1)
� Vec String n+1 � Vec String n

We want to define a function I : R � Type which models, or
interprets, points of R (complete histories) as types, and paths of
R (patches) as bijections between those types. Then we can define
interp p = coe-biject (ap I p) and obtain

interp : {n1 n2 : Nat} {h1 : History 0 n1}
{h2 : History 0 n2} � (doc h1 = doc h2)
� Bijection (I (doc h1)) (I (doc h2))

with the idea that interp (addP s l h) should in some sense
be add s l, and interp (rmP l h) should be rm l.

The type of interp has gotten more complex than before,
because there are now many patch contexts, instead of the single
doc. As a result, we must choose the interpretation of each doc h
into the type universe.

As we discussed at the beginning of this section, we cannot
simply interpret doc h as Vec String n, because these types are
not bijective. Instead, we will essentially interpret doc h as the
exact file which arises from applying the patches in h. That is, we
will record in its type exactly which file is described by this history,
rather than simply regarding it as a plain text file.

We can specialize any function f : A � B to a function be-
tween singleton types, as follows:

tosingleton : (f : A � B) � {M : A} � S(M) � S(f M)
tosingleton f (x,p) = (f x, ap f p)

Because singleton types are contractible (contain exactly one point,
and have trivial higher structure), every function between singleton
types is automatically a bijection. Call this fact single-biject.
Then we can define the interpretation

I : R � Type

I (doc h) = S(replay h)
ap I (addP s l h) =

ua (single-biject (tosingleton (add s l)))
ap I (rmP l h) = ua (single-biject (tosingleton (rm l)))
apd’ (ap I) (addP-addP-< l1 l2 s1 s2 h p) =

<replay respects this patch law>
apd’ (ap I) (addP-addP-≥ l1 l2 s1 s2 h p) =

<replay respects this patch law>



where apd’ is a function which gives the action of a function on a
PathOver (we omit the details, since they will not be used below),
and replay is a function which steps through a complete history
to compute the file specified by that history:

replay : {n : Nat} � History 0 n � Vec String n

replay [] = []
replay (ADD s @ l :: h) = add s l (replay h)
replay (RM l :: h) = rm l (replay h)

ap replay (ADD-ADD-< l1 l2 s1 s2 h pf) =
GOAL0 : add s2 l2 (add s1 l1 (replay h))

= add s1 l1 (add s2 (l2-1) (replay h))
ap replay (ADD-ADD-≥ l1 l2 s1 s2 h pf) =

GOAL1 : add s2 l2 (add s1 l1 (replay h))
= add s1 l1+1 (add s2 l2 (replay h))

Because histories are quotiented by the commutation laws, we must
prove in GOAL0 and GOAL1 that replay sends equal histories to
equal files, which amounts to showing that add satisfies the same
laws as ADD.

The implementation of replay is needed during typecheck-
ing of the definition of ap I (addP s l h), which must be
in Bijection S(replay h) S(replay (ADD s @ l :: h)).
By unrolling the definition of replay, the latter type is S(add s
l (replay h)).

6.3 Logs
The interpreter above suggests that one may implement a version
control system in homotopy type theory by storing sequences of
patches as paths, and repositories as vectors of strings. A repository
can be updated by running interp on a new patch. Note that,
although the types of the paths include histories which redundantly
encode the patch data, these types are only needed to compute the
singleton type of the file data, which is not needed at runtime; the
file data itself is computed only from the patches themselves. Thus,
it would be sensible to discard the histories at runtime, through
some erasure mechanism.

Another feature we might like to implement is the ability to print
out an explicit representation, or log, of all the patches that have
been applied to the repository. Logs can’t be generated directly
from the changes induced by patches on the repository, because we
cannot inspect the intensions of functions S(file) � S(file’).

Instead, just as we computed changes on repositories by inter-
preting points of R as singleton files, we can compute the changes
induced on histories through an alternate interpretation of points of
R as singleton histories:

I’ : R � Type

I’ (doc h) = S(h)
ap I’ (addP s l h) =

ua (single-biject (tosingleton (\ h � ADD s@l :: h))
ap I’ (rmP l h) =

ua (single-biject (tosingleton (\ h � RM l :: h)))
apd’ (ap I’) (addP-addP-< l1 l2 s1 s2 h p) =

ADD-ADD-< l1 l2 s1 s2 h p
apd’ (ap I’) (addP-addP-≥ l1 l2 s1 s2 h p) =

ADD-ADD-≥ l1 l2 s1 s2 h p

interpH : doc h = doc h’ � S(h) � S(h’)
interpH p = coe (ap I’ p)

Then interpH takes a patch p, which updates the repository
history h, to the history h’ which results from applying the patch p.
As with interp, this function computes updates to the repository
representation without relying on the endpoints (contexts)—this
shows that we could recover a history from a patch (and an initial
history), if we were to erase histories at run-time.

I’ is a good example of the benefit of functorial semantics—
both I and I’ are models of the patch theory R, and the natural
functoriality of functions in homotopy type theory ensures that both
validate all the patch laws of the theory.

6.4 Merge
In Section 3, we said that merge takes any pair of diverging patches
to a pair of converging patches that reconciles them. Our definition
of merge in Section 4 accepted arbitrary pairs of patches, because
that patch theory had a single context num.

Now that we have history-indexed patches, we might expect
merge to take a pair (doc h = doc h1) × (doc h = doc h2)
and, if a merge is possible, produce a pair (doc h1 = doc h’)
× (doc h2 = doc h’). However, as discussed in Section 3,
even though some divergent patches are impossible to reconcile
automatically—for example, given addP s 0 and addP s’ 0,
we have no reason to favor either [s,s’] or [s’,s] over the
other—we can produce a valid merge that simply undoes both ed-
its. Therefore merge can be a total function that always returns a
pair of patches (doc h1 = doc h’) × (doc h2 = doc h’).
A user-friendly system might recognize when merge undoes the
edits, indicating a merge conflict, and prompt for manual interven-
tion.

Defining such a function requires a “view” or derived recursion
principle for these types, as we illustrated in Section 4.2. The
History type characterizes the “forward-pointing” paths in R as
sequences of composable primitive patches ADD and RM, modulo
patch laws. But to define such a merge we would also need a
characterization of, for example, the type of the path !(rmP l’
h),

doc {n} (RM l’ :: h) = doc {n+1} h

The type History n n+1 does not characterize this type, be-
cause the only elements of History n n+1 lengthen the history h
(by prepending sequences of ADDs and RMs), while this path short-
ens it. In other words, a history contains only compositions of prim-
itive patches, and not their inverses. On the other hand, a merge in-
volving inverse paths is not sensible in this patch theory. Although
!(rmP l’ h) and addP s l (RM l’ :: h) have a common do-
main of doc (RM l’ :: h), the former is not part of the patch
theory we are studying; instead, it was imposed by the natural sym-
metry of identity types.

We can avoid these undesirable inverses by restricting merge
to divergent paths with shared domain doc []. This ensures that a
patch p to be merged can be mapped to a complete history interpH
p []. Users of a version control system will always encounter
compositions of generating patches starting from the empty file,
so this restriction does not come up in practice.

merge : {n1 n2 : Nat}
{h1 : History 0 n1} {h2 : History 0 n2}
(doc [] = doc h1) � (doc [] = doc h2) �
Σ(n’ : Nat). Σ(h’ : History 0 n’).

(doc h1 = doc h’) × (doc h2 = doc h’)

Because this merge is more intricate than the one considered
in Section 4, we will convert the input paths to complete histories
using interpH, then define a function mergeH which computes
merges of complete histories, and convert the resulting histories
back into paths.

To reconcile two divergent complete histories, we define the
notion that a history h2 has h1 as a prefix (or h2 extends h1):

Extension : {n1 n2 : Nat} � History 0 n1
� History 0 n2 � Type

Extension h1 h2 = Σ(s : History n1 n2). h1 ++ s = h2



Here, ++ : History n1 n2 � History n2 n3 � History
n1 n3 appends two histories. Then, if we have a pair of complete
histories h1,h2, we reconcile them by returning a history h’ which
extends both h1 and h2. The suffixes of h1 and h2 yielding h’ are
the pair of converging patches produced by the merge.

mergeH : {n n1 n2 : Nat}
(h1 : History 0 n1) (h2 : History 0 n2) �
Σ(n’ : Nat). Σ(h’ : History 0 n’).

Extension h1 h’ × Extension h2 h’

Once we have defined mergeH, we can convert its output back
to paths. A complete history can be transformed into a path doc []
= doc h by repeated concatenation:

toPath : {n : Nat} (h : History 0 n) � doc [] = doc h
toPath [] = refl
toPath (ADD s@l :: h’) = addP s l ◦ toPath h’
toPath (RM l :: h’) = rmP l ◦ toPath h’

To turn an Extension h h’ into a path, we need only travel from
doc h to doc [] and back to doc h’:

extToPath : {n n’ : Nat}
{h : History 0 n} {h’ : History 0 n’} �
Extension h h’ � doc h = doc h’

extToPath _ = (toPath h’) ◦ !(toPath h)

extToPath completely ignores the extension itself; intuitively, this
is possible because extensions are more informative than paths,
since the former contain only compositions of generators.

Combining these ingredients, we define merge as:

merge p1 p2 =
let (n’,(h’,(e1,e2))) =

mergeH (interpH p1 []) (interpH p2 [])
in (n’, (h’, (extToPath e1, extToPath e2)))

This shows that merge reduces to mergeH. We have not yet
defined mergeH, but we can reduce it to defining a merge on simple
text files. Because History 0 n is quotiented by patch laws, we
must show that mergeH sends equal histories to equal results. One
way to handle this is to choose a representative for each equivalence
class of histories, and then compute on these representatives. Here,
we can use the function replay to convert each History 0 n to
its file contents in Vec n String. Then, we could define a merge
function directly on files (perhaps using existing algorithms), and
then compute extensions of the input histories which result in that
those files. Such a mergeH would necessarily respect the patch laws
because replay does.

7. Related Work
Several prior category-theoretic analyses of version control have
been considered. Jacobson [16] interprets patches in inverse semi-
groups, where they are essentially partial bijections. Mimram and
Di Giusto [28] analyze merging as a pushout, which provides a
canonical merge for every pair of patches, including a primitive rep-
resentation of merge conflicts. Houston [15] also discusses merge
as pushout, and a duality with exceptions. Our contribution, rela-
tive to these analyses, is to present patch theory in a categorical
setting that is also a programming formalism, so it directly leads to
an implementation. These analyses consider settings where not all
maps are invertible. In homotopy type theory all identity types are
symmetric, and to fit patch theories into this symmetric setting, we
either considered a language where all patches were naturally total
bijections on any repository (Section 4 and 5), or used types to re-
strict patches to repositories where they are bijections (Section 6).

Dagit [10] presents an approach to proving some invariants
of a version control implementation using advanced features of
Haskell’s type system. Camp (Commute And Merge Patches) [7] is

an experimental version control system based on Darcs; the Camp
project aims to prove the correctness of its patch theory in Coq. We
have not yet mechanized the programs described here, but our work
provides another possible path to formalization.

Swierstra and Löh [34] explore the use of separation logic [30]
for specifying the behavior of patches. In Section 6, we took repos-
itory contexts to be patch histories, but it would be interesting
to consider using separation logic formulas to describe histories,
which would allow for small-footprint specifications of patches.

8. Conclusion
Inspired by the patch theory of Darcs [12], which emphasizes the
groupoid structure of patches, we have explored the formulation of
patch theory within the framework of homotopy type theory. Patch
theories are given as higher inductive definitions in which we spec-
ify generators for the points (path contexts), 1-dimensional paths
(patches), and 2-dimensional paths (patch laws). The groupoid laws
come “for free”, and so need not be specified explicitly. An ide-
alized implementation of a patch theory is given by a function
mapping the patch theory into a univalent universe of sets and
bijections. The sets are concrete repositories and the bijections
are the actual actions of the patches on repositories. The map-
ping is intrinsically functorial, and hence must respect the intrin-
sic groupoid structure, but is given by the elimination principle for
higher-inductive types, which demands that patches be realized by
bijections satisfying the patch laws.

Besides these general structural considerations, some homotopy-
theoretic concepts play a role in the development. In particu-
lar the “encode/decode” functions used to characterize identity
types [23, 35] here become an implementation technique. For ex-
ample, to define the merge of a span of patches (that is, a pair of
paths with a common domain), we first pass to a concrete repre-
sentation of paths, define the merge on the representation, and then
pass back to a reconciliation, a cospan of patches (a pair of patches
with common codomain) in the identity type. Other interpretations
of a patch theory are definable in a similar manner, providing oper-
ations, such as logging, of practical interest for revision control.

There is much more to be done. Most importantly, the devel-
opment of the merge operation in Section 6 is incomplete, because
we have not proved the required properties of it. There we define
merge using a partial characterization of the identity type of R as
complete histories. Defining functions in either direction is suffi-
cient to pass between these two representations, but not to prove
properties of merge via properties of mergeH, such as the merge
laws. For this, a more precise characterization is needed, namely
an inductive type which is equivalent to the identity type, as Z is to
the identity type of the circle. We leave this to future work.

More broadly, the computational interpretation of homotopy
type theory must be developed further, including a fuller under-
standing of the interplay between definitional equality, proposi-
tional equality, and computation, and an understanding of what
type erasure would mean in that setting. This includes developing
a fuller understanding of "sub-homotopical" computation, meaning
the mapping into contractible types.

One aspect of the homotopical framework that we have found
limiting is the requirement that paths be symmetric (have inverses).
In Darcs, inverses are used to define merging in terms of the el-
egant concept of pseudocommutation. But demanding inverses,
rather than just retractions representing “undo” operations, is both
conceptually questionable and practically problematic. We worked
around the presence of inverses by refining contexts using patch
histories, and using histories it was possible to define merge di-
rectly on only “forward” patches, rather than using inverses and
pseudocommutation. Despite efforts, we were unable to formulate
pseudocommutation in our setting, because to do so seems to re-



quire a complete characterization of the space of spans of patches.
One direction for future work is to study this problem using the
tools of homotopy theory to characterize such spans in a way that
is amenable to our purposes. Another is to develop a type theory
with non-symmetric paths (as suggested by [21]) grounded in di-
rected homotopy theory, where we could formulate theories of par-
tial patches without refining their contexts, which might simplify
the development in Section 6.
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A. Addendum
In this addendum, we expand on the relationship among the patch
theories considered in the main body of the paper, and clarify the
role of histories in defining and analyzing the patch theory given
in Section 6. These points were omitted from the published version
for lack of time and space.

A.1 Interval
Presenting the patch theories of Sections 4 and 5 as higher inductive
types automatically added useful inverse patches to the theory. For
example, in Section 4 we only specified a path constructor for
the add-one patch add1, but the subtract-one patch (! add1) was
provided for free.

That patch theory had exactly one patch context num, so add1
and (! add1) had the same type, num = num. In Section 6, not all
ADD and RM patches were composable, so we needed many patch
contexts. Moreover, we argued that inverse paths were undesirable
in that setting, and restricted our attention to paths doc [] = doc
h. To see why this effectively eliminates inverse paths from con-
sideration, let us explore the unit interval, a simple but analogous
example.

The unit interval is a higher inductive type defined as:

space I : Type where
zero : I
one : I
seg : zero = one

We can regard I as a patch theory with two contexts zero and one,
and one patch seg, which sends zero to one.

As usual, paths in I are automatically endowed with identities,
inverses, and composition. Nevertheless, zero = one has no more
elements than we put in—all paths of that type are homotopic to
seg. Intuitively, this is because (! seg) goes “backwards” from
one to zero, so any sequence of compositions yielding a path zero
= one must have one more seg than (! seg). For example,

seg ◦ ! seg ◦ seg : zero = one

but groupoid laws equate this to seg.
To prove this result, we will first show that I is contractible. It

suffices to exhibit a point in I, the center of contraction, together
with a proof that every point in I is equal to the center:

(x : I) � center = x

In this case, we choose the center to be zero.

is-contr : (x : I) � zero = x
is-contr zero = refl
is-contr one = seg
apd is-contr seg = refl(seg)

: PathOver (x. zero = x) seg refl seg

The last clause demands that the choice of path given by is-contr
is continuous in the choice of codomain. That PathOver reduces
to the type seg = seg, by the rules for path-over-a-path in identity
types; this is true by refl(seg).

Since I is contractible, it is also a mere proposition, and so all its
identity types are contractible [35, Lemma 3.11.10]. In particular,
to prove that seg is the unique element of zero = one up to
homotopy, we can look at the action on paths of is-contr,

apd is-contr : {a b : I} (p : a = b)
� PathOver (x. zero = x) p

(is-contr a) (is-contr b)

If we specialize this to paths zero = one, we get

apd is-contr {zero} {one}
: (p : zero = one) � PathOver (x. zero = x) p refl seg

This PathOver reduces to p = seg, yielding

apd is-contr {zero} {one} : (p : zero = one) � p = seg

which is a proof that all paths zero = one are homotopic to seg.

A.2 Open Interval
Let us extend the unit interval example by considering patch con-
texts indexed by natural numbers. The resulting open interval is a
higher inductive type defined as:

space I* : Type where
doc : Nat � I*
add1 : (n : Nat) � doc n = doc n+1

Topologically, I* is the real half-line [0,∞). This is similar to
the universal cover of the circle, discussed in Section 4.1, which
corresponds to (−∞,∞).

As a patch theory, I* has Nat-indexed contexts, and a patch
from doc n to doc n+1 for each n. The idea is that I* is the theory
of natural number repositories, and the add1 patch increments a
repository’s contents. As with the unit interval, inverse paths do not
add any additional paths from doc 0 = doc n—up to homotopy,
the only way to get from the empty document doc 0 to a document
doc n is to apply the add1 patch n times. Hence, the codomain
context doc n determines exactly which sequence of patches has
occurred.

Note that this did not occur in Section 4, where we had a single
patch context doc. Here, we have chosen more expressive contexts
to track a repository’s history—in this case, this only requires
counting how many times we have applied the only applicable
patch. (These patch contexts coincide with the repository contents,
but that is not true in general.)

To prove there is a unique path doc 0 = doc n, we show that
I* is contractible with center doc 0. As with I, it follows that doc
0 = doc n is also contractible.

We prove I* is contractible by I*-induction, which means that
it suffices to show that, for any number n, we can construct a path
doc 0 = doc n by composing add1 with itself n times, and more-
over, this choice of paths is continuous in the choice of codomain.

toPath : (n : Nat) � doc 0 = doc n
toPath 0 = refl
toPath (n+1) = add1(n) ◦ toPath n

is-contr : (x : I*) � doc 0 = x
is-contr (doc n) = toPath n
apd is-contr (add1 n) = refl

: PathOver (x. doc 0 = x) (add1 n)
(toPath n) (toPath n+1)

This last PathOver reduces to

(add1 n) ◦ (toPath n) = toPath n+1

which, once we expand the definition of toPath n+1, is true by
refl.

The type of paths starting at doc 0 is

Σ (n : Nat). doc 0 = doc n

This classifies pairs of a number and a path doc 0 = doc n, but
the latter type is contractible, so it contains no additional informa-
tion. Therefore, this type is isomorphic to Nat—that is, patches
applicable to doc 0 are characterized precisely by the index n of
their codomain context doc n. This makes sense because there is
only one path doc 0 = doc n.

A.3 Binary Trees
In analogy to Section 6, we will extend our running example to
allow two distinct edits at each patch context, add true and add
false. Again, we will index patch contexts by histories—in this



case, lists of booleans indicating the sequence of patches applied to
the repository. The edit add x thus prepends x to each history.

space R : Type where
doc : Bool List � R
add : (x : Bool) {xs : Bool List} � doc xs = doc x::xs

Now the patch theory looks like a tree, where the nodes are
histories and the paths label the edges. For example,

doc []

doc [t] doc [f]

add t add f

As before, inverses will not add new paths from the root doc
[]. The proof that R is contractible is basically the same as for I*.

toPath : (xs : Bool List) � doc [] = doc xs
toPath [] = refl
toPath (x::xs) = add x ◦ toPath xs

is-contr : (x : R) � doc [] = x
is-contr (doc xs) = toPath xs
apd is-contr (toPath xs) = refl

: PathOver (l. doc [] = l) (add x)
(toPath xs) (toPath x::xs)

This PathOver is again true by refl and the definition of toPath.
Again, it follows that paths from doc [] are characterized by

complete histories, in this case Bool Lists. That is,

Σ (xs : Bool List). doc [] = doc xs

is isomorphic to Bool List. One direction of this isomorphism is
toPath; the other projects out the codomain context, sending p :
doc [] = doc xs to xs. (It is possible to define this projection
without access to the type indices, as we did in Section 6.3.) Call
the latter function log.

Now we will define a merge operation for this patch theory, and
prove that it satisfies the merge laws. The types of these laws will
be somewhat intricate due to patch contexts—unlike in Section 4.2,
we cannot just take two paths num = num to two paths num = num.

Moreover, we will restrict merge to take diverging patches based
at doc [], to ensure the patches are sequences of adds, up to
homotopy. As in Section 6, this move allows us to ignore inverse
paths, which are not meaningful patches in this setting. Therefore,
merge will take a span of patches based at doc [], and return a
cospan reuniting them.

merge : {l1 l2 : Bool List}
(doc [] = doc l1) � (doc [] = doc l2) �
Σ(l : Bool List).

(doc l1 = doc l) × (doc l2 = doc l)

doc []

doc l1 doc l2

doc l

p1 p2

q1 q2

Because l1 and l2 characterize paths doc [] = doc l1 and
doc [] = l2, it suffices to merge pairs of Bool Lists. As in
Section 6.4, say we have a function mergeH which does this.

mergeH : Bool List � Bool List � Bool List

We can then define merge in terms of mergeH.

merge p1 p2 =
let l = mergeH (log p1) (log p2)
in (l, ((toPath l) ◦ !p1, (toPath l) ◦ !p2))

As discussed in Section 3, we want to prove that merge pro-
duces commuting squares, and that it is symmetric:

reconcile : {l1 l2 l : Bool List}
(p1 : doc [] = doc l1) � (p2 : doc [] = doc l2)

� (q1 : doc l1 = doc l) � (q2 : doc l2 = doc l)
� merge p1 p2 = (l, (q1, q2))
� q1 ◦ p1 = q2 ◦ p2

symmetric : {l1 l2 l : Bool List}
(p1 : doc [] = doc l1) � (p2 : doc [] = doc l2)

� (q1 : doc l1 = doc l) � (q2 : doc l2 = doc l)
� merge (p1, p2) = (l, (q1, q2))
� merge (p2, p1) = (l, (q2, q1))

The reconcile law is in fact enforced by the type of merge, which
says that the span and cospan form a square; and the contractibility
of R, which says that all squares commute. Thus the paths q1 ◦ p1
and q2 ◦ p2 are equal elements of doc [] = doc l.

The symmetric law reduces to the symmetry of mergeH. Given
a proof

symmetricH : (l1 l2 : Bool List)
� mergeH l1 l2 = mergeH l2 l1

that mergeH is symmetric, we can prove symmetric for merge—
the first components of the two merges are equal by symmetricH,
and the second components, the pairs of paths, are swapped by
construction, as they only depend on l, p1, and p2.

A.4 Quotiented Binary Trees
To complete the analogy to Section 6, we will extend this example
once more, this time with patch laws. For simplicity, we will say
that any two patches commute.

In the binary tree patch theory, Bool Lists were an inductive
characterization of paths from the initial repository, as those paths
were compositions of add true and add false. Here, since patch
composition commutes, we must quotient Bool Lists by permu-
tation.

This yields the type of boolean multisets, lists quotiented by
“Ex”change of adjacent elements, defined as the following quotient
higher inductive type:

space MS : Type where
[] : MS
_::_ : Bool � MS � MS
Ex : (x y : Bool) (xs : MS) � x::(y::xs) = y::(x::xs)

We index patch contexts by MSes, rather than Bool Lists. As
before, patches prepend a boolean to the context.

space R : Type where
doc : MS � R
add : (x : Bool) {xs : MS} � doc xs = doc x::xs
ex : (x y : Bool) (xs : Bool List)

� PathOver (s. doc xs = doc s) (Ex x y xs)
(add x ◦ add y) (add y ◦ add x)

The ex constructor implements the patch laws, for example, equat-
ing add true ◦ add false and add false ◦ add true. It
creates paths-over-paths because the equated patches have differ-
ent types:

add true ◦ add false : doc xs = doc true::(false::xs)
add false ◦ add true : doc xs = doc false::(true::xs)

However, true::(false::xs) and false::(true::xs) are
equal as multisets, by virtue of Ex true false xs. Thus, the
patch law ex true false xs equates compositions of patches
over the fact that their right endpoints are equal.

Now we will show R is contractible. Patch laws significantly
complicate the proof; in fact, one might even expect R to have non-



trivial loops:

doc []

doc [x] doc [y]

doc [x,y] doc [y,x]

add x add y

add y add x

Equations in MS (the bottom edge of the diagram) together with
inverses in R seemingly allow us to construct non-trivial loops doc
[] = doc [] in R. However, the patch law ex x y [] trivializes
these loops by equating the two sides.

To prove R is contractible, we first construct a path doc [] =
doc s for each multiset s. Because MS is a quotient type, we must
show that this map respects the quotient.

toPath : (xs : MS) � doc [] = doc xs
toPath [] = refl
toPath (x::xs) = add x ◦ toPath xs
apd toPath (Ex x y xs) = GOAL0

: PathOver (s. doc [] = doc s) (Ex x y xs)
(toPath (x::y::xs)) (toPath (y::x::xs))

MS-induction automatically demands this of us, in the form of the
third clause. Expanding the definition of toPath, GOAL0 has type

PathOver (s. doc [] = doc s) (Ex x y xs)
(add x ◦ (add y ◦ toPath xs))
(add y ◦ (add x ◦ toPath xs))

By path-over-a-path rules, this reduces to

ap doc (Ex x y xs) ◦ (add x ◦ (add y ◦ toPath xs))
= (add y ◦ (add x ◦ toPath xs))

We can reassociate these compositions and cancel the two instances
of toPath xs, yielding

ap doc (Ex x y xs) ◦ (add x ◦ add y) = (add y ◦ add x)

But this is exactly the type of ex x y xs, once we expand the
PathOver. This completes our definition of toPath.

Morally, this subgoal—that toPath respects the path construc-
tor of MS—verifies that ex fills in the loops we discussed above.
Indeed,

apd toPath : {xs ys : MS} (p : xs = ys)
� PathOver (h. doc [] = doc h) p (toPath xs) (toPath ys)

is a proof that, whenever xs and ys are equal multisets, then there is
a disc whose boundary is formed by toPath xs, doc xs = doc
ys, and toPath ys.

Now that we have defined toPath, we can prove that R is
contractible with center doc []:

is-contr : (r : R) � doc [] = r
is-contr (doc xs) = toPath xs
apd is-contr (add x xs) = refl

: PathOver (s. doc [] = s) (add x xs)
(toPath xs) (toPath x::xs)

apd’ (apd is-contr) (ex x y xs) = GOAL0

As before, the second clause is true by refl, using path-over-a-
path reductions and the definition of toPath. The subgoal in the
third clause is rather complicated as it involves paths over paths-
over-paths; we have a machine-checked proof of this7 but will not
discuss it further here.

7 https://github.com/dlicata335/hott-agda/blob/
homotopical-patch-theory-paper/programming/
PatchWithHistories.agda

A.5 Merge Laws For Richer Contexts
We would like to end by inductively characterizing the paths in the
patch theory of Section 6, and using this characterization to prove
the merge laws for the merge operation given in Section 6.4.

The first step will again be to prove that this R is contractible.
The proof is essentially the same as in the previous subsection; the
only difference is that this patch theory has more complex patches
and patch laws. Again, we have a machine-checked proof8 that (a
generalized form of) R is contractible.

Thus, let us start with a proof that

is-contr {n : Nat} (h : History 0 n) � doc [] = doc h

By apd is-contr, identity types in R are also contractible, so
paths in R are uniquely determined by their endpoints. Thus, the
type of paths starting at doc [],

Σ (n : Nat). Σ (h : History 0 n). doc [] = doc h

is equivalent to

Σ (n : Nat). History 0 n

because the path provides no additional information.
By univalence, all constructions respect equivalence of types;

therefore, a merge operation on complete histories suffices to merge
paths, and a proof of the merge laws for the former suffices for the
latter. In Section 6.4, we manually constructed merge on paths from
merge on histories (i.e., without univalence), so here we will prove
the merge laws manually as well. Even so, the contractibility of R
is an important ingredient.

In Section 6 we defined merge on paths as

merge : {n1 n2 : Nat}
{h1 : History 0 n1} {h2 : History 0 n2}
(doc [] = doc h1) � (doc [] = doc h2) �
Σ(n’ : Nat). Σ(h’ : History 0 n’).

(doc h1 = doc h’) × (doc h2 = doc h’)

merge p1 p2 =
let (n’,(h’,(e1,e2))) =

mergeH (interpH p1 []) (interpH p2 [])
in (n’, (h’, (extToPath e1, extToPath e2)))

given a merge

mergeH : {n1 n2 : Nat}
(h1 : History 0 n1) (h2 : History 0 n2) �
Σ(n’ : Nat). Σ(h’ : History 0 n’).

Extension h1 h’ × Extension h2 h’

on Extensions (complete histories with a particular prefix).
In this patch theory, the merge laws are:

reconcile : {n n1 n2 : Nat} {h : History 0 n}
{h1 : History 0 n1} {h2 : History 0 n2}

� (p1 : doc [] = doc h1) � (p2 : doc [] = doc h2)
� (q1 : doc h1 = doc h) � (q2 : doc h2 = doc h)
� merge p1 p2 = (n, (h, (q1, q2)))
� q1 ◦ p1 = q2 ◦ p2

symmetric : {n n1 n2 : Nat} {h : History 0 n}
{h1 : History 0 n1} {h2 : History 0 n2}

� (p1 : doc [] = doc h1) � (p2 : doc [] = doc h2)
� (q1 : doc h1 = doc h) � (q2 : doc h2 = doc h)
� merge p1 p2 = (n, (h, (q1, q2)))
� merge p2 p1 = (n, (h, (q2, q1)))

The reconcile law follows from the contractibility of R: the type
of merge specifies that p1, p2, q1, and q2 form a square, and by
contractibility, all squares in R commute.

8 https://github.com/dlicata335/hott-agda/blob/
homotopical-patch-theory-paper/programming/
PatchWithHistories2.agda
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The symmetric law follows from the symmetry of mergeH.
Assume a proof:

symmetricH : {n n1 n2 : Nat} {h : History 0 n}
� (h1 : History 0 n1) (h2 : History 0 n2)
� {e1 : Extension h1 h} {e2 : Extension h2 h’}
� mergeH h1 h2 = (n, (h, (e1, e2)))
� mergeH h2 h1 = (n, (h, (e2, e1)))

The first two components of the two merges are equal because the
same is true of mergeH; the last two components, a pair of paths,
are swapped because they depend only on the last two components
of the corresponding mergeHs, which symmetricH ensures are also
swapped.
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