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Abstract
Formal constructive type theory has proved to be an effective lan-
guage for mechanized proof. By avoiding non-constructive princi-
ples, such as the law of the excluded middle, type theory admits
sharper proofs and broader interpretations of results. From a com-
puter science perspective, interest in type theory arises from its ap-
plications to programming languages. Standard constructive type
theories used in mechanization admit computational interpretations
based on meta-mathematical normalization theorems. These proofs
are notoriously brittle; any change to the theory potentially invali-
dates its computational meaning. As a case in point, Voevodsky’s
univalence axiom raises questions about the computational mean-
ing of proofs.

We consider the question: Can higher-dimensional type theory
be construed as a programming language? We answer this question
affirmatively by providing a direct, deterministic operational inter-
pretation for a representative higher-dimensional dependent type
theory with higher inductive types and an instance of univalence.
Rather than being a formal type theory defined by rules, it is instead
a computational type theory in the sense of Martin-Löf’s meaning
explanations and of the NuPRL semantics. The definition of the
type theory starts with programs; types are specifications of pro-
gram behavior. The main result is a canonicity theorem stating that
closed programs of boolean type evaluate to true or false.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages

Keywords Homotopy Type Theory, Logical Relations

1. Introduction
Constructive type theory in the broadest sense is well-established
as a comprehensive framework for both the analysis and implemen-
tation of programming languages, and as a comprehensive frame-
work for mechanizing mathematics. How is it that such apparently
disparate objectives could be achieved by the same framework?
From the perspective of an intuitionist, it is only to be expected—
the whole point of intuitionism is to achieve a synthesis of proof
and program, grounding the definition of truth itself in computa-
tion. But few subscribe to such principles, and, practically speak-
ing, constructive type theory has proved useful regardless of its ide-
ological origins.
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The key is to recognize that there are two quite different no-
tions of constructivity in type theory, corresponding to two differ-
ent conceptions of the subject. One sense, which is embodied in
the formal type theories implemented in Coq [38] and Agda [31],
to name two examples, is the principle of constructivity as affording
axiomatic freedom. By avoiding commitments to non-constructive
principles, such as the unrestricted law of the excluded middle, the
theory is compatible with many more interpretations than it would
otherwise be, including interpretations in which proofs are mod-
eled as programs, but also other interpretations such as those de-
rived from topology [16]. Formal type theories are defined by a
collection of inference rules defining a collection of types and their
inhabitants, and specifying when two such are to be considered def-
initionally equal [27]—essentially, when they are equal by virtue of
elementary simplifications. Axioms such as the excluded middle, or
other, more subtle principles that may be taken for granted (or even
denied!) in classical settings may be added to express proofs that
use methods outside of the constructive canon. This approach has
proved hugely successful for mechanizing a broad range of mathe-
matics while avoiding obstructive foundational arguments.

Axiomatic freedom is well and good, but the formal approach
does not address the question of the applicability of type theory
to programming languages. Besides being the very motivation for
constructivity in the first place, we, the authors, along with many
computer scientists, are interested in the application of type theory
to running code. Thus, the central question for us is what is the
computational meaning of a proof, or, in other words, in what sense
is type theory a programming language?

From the axiomatic perspective there are two main ways of ad-
dressing this question. One is indirect: by building models in other
constructive theories. To the extent that the latter have computa-
tional content, it can be transferred to type theory itself by the
interpretation. The other is direct, by defining a concept of sim-
plification, or normalization, and showing, by a substantial meta-
mathematical proof that must necessarily go beyond the capabili-
ties of the type theory itself, that every term has a unique simplest
form. The operational meaning of a term is then taken to be its
unique simplest form, obtained by any of a variety of means. The
same idea is often used to show the decidability of type checking
for the theory, which is essential because the elements of types may
be considered to be formal proofs, rather than semantic construc-
tions, and hence ought to admit decidable checking.

This account of the computational content of proofs leaves a
little to be desired. For example, normalization theorems do not
afford a polynomially equivalent cost model [36]. For another, there
are natural concepts of computation—such as partiality, general
recursive types, non-determinacy, and mutable state—that do not
appear to arise from simplification of proof terms in a logical
system. But perhaps these shortcomings may be remedied in the
near or distant future. The more serious difficulty, in both theory
and practice, is the problem of defining a type theory by rules
and eliciting its computational content by metamathematics. It is



never obvious how to choose the rules that define a formal type
theory, particularly when one is concerned with its computational
interpretation. A seemingly minor alteration can disrupt or even
destroy the computational meaning of the theory when obtained by
metamathematical analysis. Moreover, such results are notoriously
brittle; a seemingly small change to the rules can entirely invalidate
the established metatheory.

Two cases in point illustrate the difficulties. The first is the
problem of function extensionality. Formal type theory includes
an identity type of proofs that two elements of a type are equal.
In the case of function types there is no proof corresponding to
the principle that two functions are equal if they have the same
graph. This is a serious obstacle to mechanization of mathematics,
which is invariably extensional in this respect. Were computational
considerations to be ignored, one could simply add an axiom of
extensionality, and be done with it. But what is the computational
content of such a proof? In a tour de force paper, Altenkirch et al.
[3] showed how to elicit this content without severely disrupting the
theory, but the account is rather indirect and technically involved.
The second, more recently, is Voevodsky’s celebrated univalence
axiom, which equates types that are, in a technically precise sense,
equivalent. From the outset [40] a central question has been: What
is the computational content of univalence?

Besides disrupting the standard computational interpretation of
formal type theory, the univalence axiom led to consideration of
the more general question of proof-relevant notions of equality for
which the interchangeability of the sides of an equation relies on
information encoded in the proof that they are equal. In the case of
univalence, types can be equivalent in disparate ways, so it is not
immediately obvious in what sense they may be considered equal,
even though doing so is standard practice in informal mathematics.
Addressing this question raises the further question of when two
such proofs are themselves equal. For example, one would expect
the composition of equality proofs to be associative, which is to say
that the two associations ought to be considered equal, which may
in turn require further evidence. Such considerations are addressed
by the homotopy-theoretic interpretation of constructive type the-
ory [40] in which the previously known identity type is general-
ized to become an identification type whose elements are variously
called paths, homotopies, or, as we shall call them here, identifi-
cations. The resulting theory inclusive of identifications is called
higher-dimensional type theory. The question considered in this pa-
per is: Can higher-dimensional dependent type theory be regarded
as a programming language, while retaining its role as a logic for
mechanizing mathematics?

We answer this question in the affirmative using a new notion
of cubical logical relations. The use of cubical methods is inspired
by the formal cubical type theories proposed by Cohen et al. [10]
and Licata and Brunerie [25], which are themselves inspired by
the model of homotopy type theory given by Bezem et al. [8]
using Kan cubical sets, a constructive variant of a concept from
classical homotopy theory. The model given by Bezem et al. [8]
established the constructivity of the univalence axiom by giving
an interpretation in a constructive set theory, but it does not yield
in any straightforward way a direct computational interpretation of
higher-dimensional dependent type theory.

The importance of cubical methods for type theory may be seen
as an application of Martin-Löf’s principles governing the judg-
mental structure of type theory [28, 30]. In contrast to homotopy
type theory [40], cubical methods consider not only types and their
elements, but also identifications among and within types, as a
primitive concept. Type theory is expanded to higher dimensions
according to the following pattern. At dimension 0 we have the
usual types and their elements, which are points of those types.
Types at dimension 1 form identifications between ordinary types,

and classify identifications, or lines, between points. At dimension
2 are identifications between identifications, or homotopies, which
form squares among types and among lines in types.

The dimensions of the universe of types and of the types them-
selves are populated by a variety of comprehension principles such
as the aforementioned univalence axiom, and by instances of the
general concept of a higher inductive type, which is freely gen-
erated by given cubes of arbitrary dimension. To ensure that the
cubical structure expresses a sensible concept of identification, the
type theory must satisfy a constructive form of the Kan condition
similar to that of Bezem et al. [8], allowing elements to be coerced
between identified types, and that they are closed under a compo-
sition operation that ensures, among other important criteria, that
identifications are composable and reversible, and that composition
is associative up to higher identification.

We elicit the computational content of higher-dimensional de-
pendent type theory using Martin-Löf’s meaning explanations,
which are directly grounded in computation. Similar methods are
used to define the NuPRL type theory [1, 39]; our work may also
be seen as an extension of the NuPRL type theory to account for
higher dimensions. Rather than being defined by a collection of
inference rules to which a computational meaning is assigned after
the fact, a meaning explanation starts with the notion of compu-
tation (given by a deterministic operational semantics for a col-
lection of programs), and then defines types as specifications of
their behavior. Thus, for example, a function from A to B is any
program—perhaps a “foreign function” or “oracle”—that sends el-
ements of A to elements of B. More precisely, types specify the
exact equality of behaviors, so that, for example, functions with
the same graph are exactly equal. In the higher-dimensional set-
ting this means that we sharply distinguish exact equality (in its
ordinary mathematical sense) from identification (in its homotopy-
theoretic sense), rather than conflate the two as is done in other
treatments of higher-dimensional structure [8, 40]. The definitions
of the types are given using only constructively valid, predicative
principles that would in any case have to be accepted for the meta-
mathematical analysis of a formal type theory. Indeed, because
all of the rules of higher-dimensional type theory are sound under
our definition of types, and our semantics may also be seen as an
abstract cubical realizability interpretation of formal cubical type
theory, providing insight into those formalisms as well. But to view
our work only as such would be to sell it short. As with the NuPRL
type theory [2, 14], we view proof theory as a window on the truth,
not as defining truth itself.

The main result of this paper is to answer affirmatively (and con-
structively!) the question of whether higher-dimensional type the-
ory can be construed as a programming language. More precisely,
we formulate a computational higher-dimensional dependent type
theory with instances of higher inductive types and of univalence,
for which we can obtain the following canonicity theorem:

Theorem 1 (Canonicity). IfM ∈ bool [·] then eitherM ⇓ true or
M ⇓ false.

As emphasized by Martin-Löf [28], the canonicity theorem con-
firms that the theory is consistent and has a direct computational
meaning.

2. Higher-Dimensional Programming
Martin-Löf’s meaning explanations of type theory are based on a
notion of computation. In order to extend meaning explanations
to higher dimension, we must first extend computation to higher
dimension, by explaining how to evaluate not only ordinary terms
at dimension 0, but path terms at dimension 1 and above.

In homotopy type theory [40], paths are represented as terms
P : IdA(M,N) of identity type; the type specifies the endpoints



of a path, in this case M,N : A. A homotopy is a term H :
IdIdA(M,N)(P,Q) of iterated identity type. Such an iterated identity
type is not well-formed unless the two endpoints P,Q are them-
selves both paths with identical boundary. As the dimension in-
creases, more and more boundary data is required to even state the
type of a higher cell. This data is required not only by the judg-
mental apparatus, because well-formedness of a type depends on
the endpoints of a path, but for the operational semantics as well,
because path operations can compute endpoints.

Bezem et al. [8] suggested organizing this data with cubical sets,
a storied mathematical idea due to Kan [24] and one of the earliest
combinatorial descriptions of topological spaces. Cubical methods
in type theory have since been used in applications ranging from
synthetic homotopy theory to guarded recursion [9, 10, 25, 26].

(A number of related structures all go by the name “cubi-
cal sets.” Experts will recognize our formulation as equivalent to
presheaves on the free cartesian cube category generated by an in-
terval object 1 → I ← 1, i.e., cubes with degeneracies, faces, and
diagonals.)

2.1 Cubical Programs
Concretely, our programming language has two sorts—ordinary λ-
calculus terms (written A,B,M,N, . . . with variables a, b, . . . )
and dimension terms (r, r′), which are either 0 or 1 (ε), or a
dimension name (x, y, z, . . . ). These dimension names are familiar
to programming language researchers as nominal constants [32, 33]
or symbols [20]. Dimension names represent formal elements of an
abstract interval whose end points are notated 0 and 1.

Although dimension names look superficially like term vari-
ables, they are quite different in a few regards—we can evaluate
programs with free dimension names, but not free variables, and
the operational semantics compares them for equality. Importantly,
however, all our constructions respect permutation of names.

Dimension terms occur as arguments to certain term formers in
our programming language; for example, loopr is a program for
any dimension term r (i.e., loop0, loop1, and loopx are all valid
programs). We define a dimension substitution operation M〈r/x〉
which replaces free occurrences of x in M with r, alongside ordi-
nary term substitution written M [N/a].

We write FD(M) for the set of dimension names free in M
(called the support in nominal set literature), and say that M is a
Ψ-cube if FD(M) ⊆ Ψ. We call ∅-cubes points, x-cubes lines,
(x, y)-cubes squares, and so forth. An x-cube M can be regarded
as an abstract line in the x direction, whose left endpoint, or face, is
M〈0/x〉, whose right face isM〈1/x〉, and whose dependence on x
represents the parameter x tracing out the “interior” of the line. An
(x, y)-cube N is an abstract square with four lines as its boundary,
and four points as the boundary of those lines:

y

x
N〈0/x〉〈0/y〉

N〈0/x〉〈1/y〉

N〈1/x〉〈0/y〉

N〈1/x〉〈1/y〉

N〈0/x〉 N〈1/x〉

N〈0/y〉

N〈1/y〉

N

The fact that dimension substitutions commute validates the geo-
metrical fact that the 〈0/x〉 face of N〈0/y〉 must agree with the
〈0/y〉 face of N〈0/x〉 in the upper left.

A Ψ-cubeM can be regarded trivially as a degenerate, or reflex-
ive, (Ψ, x)-cube whose x-faces are bothM . Finally, we can substi-
tute one dimension name for another, which takes the diagonal of a
square.N〈x/y〉 is an x-line (the upper-left-to-lower-right diagonal

in the diagram above) whose left face is N〈0/x〉〈0/y〉 and whose
right face is N〈1/x〉〈1/y〉.

We call all combinations of faces, diagonals, and degeneracies
of a cube its aspects. Aspects are obtained by means of total
dimension substitutions, written ψ : Ψ′ → Ψ, which take a Ψ-cube
M to a Ψ′-cube Mψ. If we think of Ψ as a context of dimension
names, then degeneracies correspond to weakenings, diagonals to
contractions, and permutation of Ψ to exchange; these notions of
aspects yield a cartesian notion of dimension, one quite analogous
to the behavior of variables in type theory.

Note that terms are not to be understood solely in terms of
their dimensionally-closed instances (namely, their 0-dimensional
aspects). Rather, a term’s dependence on dimension names is to
be understood generically; geometrically, one might imagine addi-
tional unnamed points in the interior of the abstract interval.

2.2 Syntax

Terms M := (a:A)→ B | (a:A)×B | Idx.A(M,N)

| bool | notr | S1 | λa.M | app(M,N) | 〈M,N〉
| fst(M) | snd(M) | 〈x〉M |M@r | true | false
| ifa.A(M ;N1, N2) | notelr(M) | base | loopr
| S1-elima.A(M ;N1, x.N2) | coer r

′
x.A (M)

| hcom
−⇀ri
A (r  r′,M ;

−−−⇀
y.Nε

i )

Figure 1. Term syntax.

The syntax of our cubical programming language is described
in Figure 1; it is largely familiar. We write x.− for dimension
binders and a.− for term binders. Additionally, in (a:A)→ B and
(a:A)×B, a is bound inB. We now briefly describe the unfamiliar
constructs.
〈x〉M is an abstraction of a dimension name x inM , andM@r

is application to a dimension term. S1 is the higher inductive type
corresponding to the circle, which has a base point base and an x-
line loopx. Just as if takes a motive type a.A, a boolean M , and
two cases N1, N2 corresponding to true and false, the eliminator
for the circle takes two cases N1 and x.N2 corresponding to its
generating base point and line. notr is an instance of univalence
corresponding to the negation equivalence between bool and itself;
this in fact forms a type with elements notelr(M), as we explain in
Section 4.6.

This brings us to the last major constructs of cubical type the-
ory, namely the Kan conditions, coe and hcom. The first, called
coercion, takes an x-line A between types and an element M of
A〈r/x〉 to an element of A〈r′/x〉. This is a generalization of the
transport operation described in the HoTT Book [40], and indeed
of the ordinary notion of coercion in programming: x.A is evidence
identifying the typesA〈r/x〉 andA〈r′/x〉, and coe effects the con-
tent of this identification on elements of the former type.

The second, called homogeneous Kan composition, states that
open boxes in any type have lids. This operation endows types with
a higher groupoid structure by ensuring that lines can be composed,
reversed, and so forth. Some simple instances of this principle are
easy to visualize.

The simplest composition scenario states that a U -shaped con-
figuration of lines always forms the boundary to a square. If M
is an x-line in A, and y.Nε are y-lines in A, and their endpoints
agree as depicted below, then hcomx

A(0  1,M ; y.N0, y.N1) is
the composite, an x-line in A from N0〈1/y〉 to N1〈1/y〉. More-
over, there is an (x, y)-square with those four lines as its boundary,
namely hcomx

A(0 y,M ; y.N0, y.N1), which is called the filler



of this composition scenario. (The 〈1/y〉 face of the filler is clearly
the composite. We will see later why the other faces agree.)

y

x
·

N0〈1/y〉

·

N1〈1/y〉

N0 N1

M

hcomxA(0 1,M ; y.N0, y.N1)

The general form of hcom is hcom
−⇀ri
A (r  r′,M ;

−−−⇀
y.Nε

i ). M
is the cap of the composition; r specifies which “side” the cap is
on (above, the y = 0 side), and r′ the side the composite is on
(above, the y = 1 side). When r′ is a dimension name not occurring
elsewhere in the composition problem, the hcom “traces out” the
interior of the composition problem, ranging from the cap to the
composite, thus obtaining the filler. Finally, −⇀ri = r1, . . . , rn is a
list of n ≥ 1 dimension terms called the extents of the composition
problem, and

−−−⇀
y.Nε

i is a list of 2n tube faces, each with a bound
dimension name. Each extent specifies the dimension across which
each pair of tube faces lies; for example, the first two tube faces are
on the r1 = 0 and r1 = 1 sides of the composition problem (above,
x = 0 and x = 1). The bound dimension names in the tube faces
are the dimension in which r, r′ lie; binding it ensures the cap and
composite do not vary in that direction.

zy

x
·

·

·

·

·

·

·

·

Above is an example of a two-extent composition problem. If
the top (x, z)-square is M , the left and right (y, z)-squares (across
the x direction) are N0

x , N
1
x , and the back and front (x, y)-squares

(across the z direction) are N0
z , N

1
z , then the bottom face of the

cube (in gray) is an (x, z)-square, the composite

hcomx,z
A (0 1,M ; y.N0

x , y.N
1
x , y.N

0
z , y.N

1
z )

while the interior (x, y, z)-cube filler is

hcomx,z
A (0 y,M ; y.N0

x , y.N
1
x , y.N

0
z , y.N

1
z )

It is difficult to depict more complex composition scenarios.
The purpose of the Kan conditions is to provide closure prop-

erties for identifications, ensuring each type satisfies the laws of
higher groupoids. When we compare our theory to that of the HoTT
Book [40], the Kan conditions will implement the eliminator of the
identity type. As this is the essence of finding the computational
content of higher-dimensional type theory, the Kan conditions ac-
count for much of the complexity of the present work.

Our hcom operation is closely related to the uniform Kan con-
dition [8, 17, 21] introduced by Bezem et al. [8], which differs
from the ordinary Kan condition of cubical sets [24, 47] in two
important ways. First, the classical definition simply states that
fillers exist for all open boxes while hcom explicitly witnesses
this fact, providing a composition structure on each type rather
than simply stating a property of types. (Such structures have been
considered in the mathematical literature on algebraic weak fac-

torization systems [18].) Second, we do not require that the ex-
tents −⇀ri coincide with the set of free dimension names in the
term. We allow composition scenarios like the first we described,
hcomx

A(0 1,M ; y.N0, y.N1), where the cap and tube faces de-
pend on not only x but also z, forming a “trough” of the top, left,
and right faces of a cube, composing to the bottom face. In addition,
the 〈0/z〉 face of that bottom face must be exactly

hcomx
A〈0/z〉(0 1,M〈0/z〉; y.N0〈0/z〉, y.N1〈0/z〉)

This is the uniformity of the uniform Kan condition, which is of
course very natural in syntax, because substitutions commute with
term formers.

We will carefully specify the behavior of coe and hcom in
Section 3.3, including the adjacency conditions that certain faces
of the cap and tube faces must agree, as depicted above, and that
certain faces of composites and fillers must agree with (faces of)
the cap and tube faces.

2.3 Operational Semantics
We define the operational semantics of our cubical programming
language using two judgments:

1. M val, stating that M is a value, or canonical form, and

2. M 7−→M ′, stating that M takes one step of evaluation to M ′.

These judgments apply to closed terms of any dimension, that is,
terms containing free dimension names but not free term variables.

If M val then M 67−→, but the converse need not be the case.
As usual, we write M 7−→∗ M ′ to mean that M transitions to M ′

in zero or more steps. We say M evaluates to V , written M ⇓ V ,
when M 7−→∗ V and V val. Transitions are deterministic, i.e.,

If M 7−→M1 and M 7−→M2, then M1 = M2.

up to α-equivalence. This implies a term has at most one value.
A representative sample of the operational semantics can be

found in Figure 2. We have included all the rules pertaining to
dependent functions and booleans, as well as the type-generic rules
for the Kan conditions. (See the accompanying preprint [4] for the
complete operational semantics.)

Most of the operational semantics rules are typical of weak head
reduction: introduction forms are values, and elimination forms
only evaluate their principal arguments. hcom and coe evaluate
their type argument first, and are implemented differently at every
type. At higher type, like (a:A)→ B, they are implemented using
hcom and coe at the constituent types. At bool and S1, coe has no
effect because the trivial coercion from bool to bool (resp., S1) has
no effect, and hcom has the minimum implementation needed to
satisfy the Kan conditions described in Section 3.3. This is because
composition is primitive at base types, and higher inductive types
such as bool and S1 are inductively generated by their constructors
and Kan composition. (As we discuss in Section 4.1, we define
bool as a higher inductive type although it has no line constructors,
to demonstrate the robustness of our canonicity result.)

if evaluates its principal argument. When true it returns the
first branch and when false the second; when the argument is an
hcom of booleans, it returns a composition, in the motive type A,
of ifs on the constituent booleans. The com term mentioned in this
operational semantics rule is an abbreviation:

com
−⇀ri
y.A(r  r′,M ;

−−−⇀
y.Nε

i ) :=

hcom
−⇀ri
A〈r′/y〉(r  r′, coer r

′
y.A (M);

−−−−−−−−−−⇀
y.coey r

′

y.A (Nε
i ))

com implements heterogeneous composition by combining the two
Kan operations, and is needed here because the motive A is depen-
dent on bool, as we discuss in Section 4.1.



hcom and coe

A 7−→ A′

coer r
′

x.A (M) 7−→ coer r
′

x.A′ (M)

A 7−→ A′

hcom
−⇀ri
A (r  r′,M ;

−−−⇀
y.Nε

i ) 7−→ hcom
−⇀ri
A′(r  r′,M ;

−−−⇀
y.Nε

i )

Dependent functions

(a:A)→ B val

M 7−→M ′

app(M,N) 7−→ app(M ′, N) app(λa.M,N) 7−→M [N/a] λa.M val

hcom
−⇀ri
(a:A)→B(r  r′,M ;

−−−⇀
y.Nε

i ) 7−→ λa.hcom
−⇀ri
B (r  r′, app(M,a);

−−−−−−−−⇀
y.app(Nε

i , a))

coer r
′

x.(a:A)→B(M) 7−→ λa.coer r
′

x.B[coer
′ x
x.A

(a)/a]
(app(M, coer

′ r
x.A (a)))

Booleans

bool val

−⇀ri = x1, . . . , xi−1, ε, ri+1, . . . , rn

hcom
−⇀ri
bool(r  r′,M ;

−−−⇀
y.Nε

i ) 7−→ Nε
i 〈r′/y〉

r = r′

hcomx1,...,xn
bool (r  r′,M ;

−−−⇀
y.Nε

i ) 7−→M true val false val

r 6= r′

hcomx1,...,xn
bool (r  r′,M ;

−−−⇀
y.Nε

i ) val

M 7−→M ′

ifa.A(M ;T, F ) 7−→ ifa.A(M ′;T, F ) ifa.A(true;T, F ) 7−→ T

ifa.A(false;T, F ) 7−→ F

r 6= r′ H = hcomx1,...,xn
bool (r  z,M ;

−−−⇀
y.Nε

i )

ifa.A(hcomx1,...,xn
bool (r  r′,M ;

−−−⇀
y.Nε

i );T, F )
7−→

comx1,...,xn
z.A[H/a](r  r′, ifa.A(M ;T, F );

−−−−−−−−−−−−⇀
y.ifa.A(Nε

i ;T, F ))

coer r
′

x.bool(M) 7−→M

Figure 2. Operational semantics, selected rules.

The primary sources of higher cubes in the syntax are the Kan
conditions and the circle. The circle provides a good example of
the interplay between dimension substitution and evaluation:

base val loopx val loopε 7−→ base

Thus for any Ψ, base is a Ψ-cube and loopx is a (Ψ, x)-cube. We
arrange that the 〈ε/x〉 faces of loopx are base with the rule that
loopε 7−→ base.

Evaluating a Ψ-cube never increases its dimension, but a cube
which depends on x may lose its dependency on x, thus revealing
it to be degenerate. To be precise,

If M 7−→M ′, then FD(M ′) ⊆ FD(M).

3. Cubical Meaning Explanations
The judgments of computational type theory are defined in terms of
a system of relations between programs. In this framework, types
are merely specifications of the computational behavior of these
programs, and can be thought of as a system of type refinements
for an untyped language. In this section, we define what is a cubical
type system, and how it gives rise to the judgments of computational
higher-dimensional type theory.

3.1 Ordinary Meaning Explanations
We begin by briefly recalling the ordinary meaning explanations
[1, 19, 28, 39] of Martin-Löf [28], which also serve as the basis of
the NuPRL type theory [1].

Computational type theory is built on two core judgments,
namely that two programs are equal types:

A
.
=B type

and that two programs are equal at a type:

M
.
=N ∈ A

The judgmentA type is simply an abbreviation forA .
=A type, and

M ∈ A forM .
=M ∈ A. To be a type is to evaluate to a canonical

type, that is, to prescribe what it means for a canonical form to be
a canonical member (or element) of that type, and for two such
to be equal members of that type. To be equal types is to evaluate
to canonical types equipped with identical notions of membership
and equal membership. To be a member (resp., equal members) of a
type A is to evaluate to a canonical member (resp., equal canonical
members) of the canonical type given by the value ofA. We say that
A type is a presupposition of the judgment M .

= N ∈ A because
we cannot make sense of this judgment until we know that A is
equipped with a notion of membership.

For example, we might say that bool is a canonical type whose
canonical members are true and false, such that true is equal only
to true, and false to false. Then bool type, because bool ⇓ bool
which is a canonical type, and M .

= N ∈ bool means that either
M ⇓ true and N ⇓ true, or M ⇓ false and N ⇓ false.

A type system over a programming language is a family of rela-
tions specifying which values are (equal) canonical types, and for
each canonical type, which values are (equal) canonical members
of that canonical type. To be precise, a type system is

1. A symmetric and transitive relation ≈ over values, and

2. For each A0 ≈ A0, a symmetric and transitive relation ≈A0

over values, such that if A0 ≈ B0, the relations ≈A0 and ≈B0

are equal.



These relations are symmetric and transitive to ensure the equality
judgments are as well. They are not reflexive, as not all values are
canonical types and canonical members of every canonical type,
but for any A0 such that A0 ≈ B0, symmetry and transitivity
imply A0 ≈ A0. These partial equivalence relations are simply
a technical device for simultaneously defining a predicate and an
equivalence relation on objects satisfying the predicate. A value
may be a canonical member of multiple canonical types, and may
be equal to another value at some types but not others.

The meanings of the core judgments are fixed by any type
system: A .

= B type when A ⇓ A0, B ⇓ B0, and A0 ≈ B0; and
M

.
=N ∈ A whenM ⇓M0,N ⇓ N0,A ⇓ A0, andM0 ≈A0 N0.
The open judgments

a1 : A1, . . . , an : An � A
.
=B type

a1 : A1, . . . , an : An �M
.
=N ∈ A

express that a judgment is true for all members of the types
A1, . . . , An, and moreover that it respects the equality of those
types. For example, a : A � M ∈ B when for all N .

= N ′ ∈ A,
M [N/a]

.
= M [N ′/a] ∈ B[N/a]. (The full definition is slightly

involved because context types Ai can depend on earlier aj .)
It is no mistake that we write M ∈ A rather than M : A, and

Γ � M ∈ A rather than Γ ` M : A. The latter (perhaps more
familiar) judgments of formal type theory capture the idea that M
constitutes a formal proof of the proposition A. There, M proves
a unique proposition A (up to definitional equality), and from M
one can reconstruct not only A but a full derivation of M : A. In
computational type theory, M .

= N ∈ A means that the programs
M andN exhibit equal behaviors as specified byA. This difference
surfaces in many ways:

• M ∈ bool requires only that M ⇓ true or M ⇓ false,
and nothing whatsoever about the structure of M . In contrast,
M : bool only when M is structurally well-typed.
• m : N, n : N � m + n

.
= n + m ∈ N is true (for suitable

definitions of N and +) because for any natural numbers m,n,
m+n and n+m evaluate to the same natural number. Proving
this fact requires an inductive argument, but it is true even if one
cannot invent that argument. In contrast, there is no definitional
equality m : N, n : N ` m + n ≡ n + m : N, because
one cannot see they are equal merely by simplifying (e.g., β-
normalizing) both sides. That is, a proof about m + n is not
self-evidently a proof about n + m; one cannot expect to, in
general, systematically reconstruct a derivation of the latter
given a derivation of the former, without an induction argument.
• In computational type theory, two functions A → B are equal

whenever they send equal elements ofA to equal elements ofB.
Since we define types solely using the computational behavior
of programs, there is no other sensible definition in this setting.
• For all these reasons, it is not decidable whether a program
M has type A, nor should one expect it to be: M ∈ A is
an assertion about the runtime behavior of a program, not the
content of a formal proof.

These differences have led some to believe that computational type
theory is less useful than formal type theory. In fact, their judg-
ments are altogether different, and suitable for different purposes!
As a logic for reasoning about program behavior, the applicability
of computational type theory is indisputable. On the other hand, it
is quite true that M ∈ A is not an appropriate notion of formal
proof, because the structure of M may come far short of explain-
ing why A is true. (In proof theories for computational type theory,
derivations often contain much more information than M .)

3.2 Closed Cubical Judgments
One can regard ordinary type theory as the fragment of cubical
type theory in which no terms depend on dimension names. Since
cubical programs represent not only ∅-cubes but x-cubes, (x, y)-
cubes, and higher, one can have canonical Ψ-cubes for any Ψ, and
hence a cubical type system specifies when for any Ψ, a canonical
Ψ-cube classifies other Ψ-cubes, and when two canonical Ψ-cubes
are equal in such a Ψ-cube.

Definition 2. A cubical type system consists of

1. For every Ψ, a symmetric and transitive relation ≈Ψ over
values A0 such that FD(A0) ⊆ Ψ, and

2. For every A0 ≈Ψ B0, symmetric and transitive relations ≈Ψ
A0

and ≈Ψ
B0

over values M0 such that FD(M0) ⊆ Ψ, such that
M0 ≈Ψ

A N0 if and only if M0 ≈Ψ
B N0.

We will sometimes write A ∼Ψ B when A ⇓ A0, B ⇓ B0, and
A0 ≈Ψ B0, and M ∼Ψ

A N when M ⇓M0, N ⇓ N0, A ⇓ A0, and
M0 ≈Ψ

A0
N0.

The two most fundamental judgments of cubical type theory are

A
.
=B pretype [Ψ] and M

.
=N ∈ A [Ψ]

Further judgments are defined in terms of these. As before, the
meanings of these judgments are fixed by any cubical type sys-
tem, but their definitions are more involved than simply evaluating
A,B,M,N .

Complications arise because these judgments should be closed
under dimension substitution. The intuitive meaning ofM ∈ A [Ψ]
is that M is a Ψ-cube of the pretype A, so it should certainly be
the case that its aspects are also cubes of the same pretype, i.e.,
Mψ ∈ Aψ [Ψ′] for all ψ : Ψ′ → Ψ. If we say M ∈ A [Ψ] means
that A ⇓ A0, M ⇓ M0, and M0 ≈Ψ

A0
M0, there is certainly

no reason why we should expect Aψ ⇓ A′0, Mψ ⇓ M ′0, and
M ′0 ≈Ψ′

A′0
M ′0, since ψ can change the evaluation behavior of M . A

concrete example is hcomx
bool(0  0,M ; y.N, y.N), which steps

to M but whose 〈0/x〉 face steps to N〈0/y〉.
An obvious solution is to build this condition into the mean-

ing of the judgment, and say that M ∈ A [Ψ] when for any
ψ : Ψ′ → Ψ, Mψ ∼Ψ′

Aψ Mψ. This guarantees the ψ aspect of
any Ψ-cube of a pretype evaluates to a canonical Ψ′-cube of that
pretype, but still says nothing about the relationship between differ-
ent canonical aspects of the original Ψ-cube, or about the aspects of
those canonical Ψ′-cubes. We impose the following stronger con-
dition (where Aψ1ψ2 means (Aψ1)ψ2):

Definition 3. We say A
.
= B pretype [Ψ], presupposing that

FD(A,B) ⊆ Ψ, when for any ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1,

1. Aψ1 ⇓ A1, A1ψ2 ⇓ A2, Aψ1ψ2 ⇓ A12,
2. Bψ1 ⇓ B1, B1ψ2 ⇓ B2, Bψ1ψ2 ⇓ B12, and
3. A2 ≈Ψ2 A12 ≈Ψ2 B2 ≈Ψ2 B12.

Definition 4. We say M
.
= N ∈ A [Ψ], presupposing A

.
=

A pretype [Ψ] and FD(M,N) ⊆ Ψ, when for any ψ1 : Ψ1 → Ψ
and ψ2 : Ψ2 → Ψ1,

1. Mψ1 ⇓M1, M1ψ2 ⇓M2, Mψ1ψ2 ⇓M12,
2. Nψ1 ⇓ N1, N1ψ2 ⇓ N2, Nψ1ψ2 ⇓ N12, and
3. M2 ≈Ψ2

A12
M12 ≈Ψ2

A12
N2 ≈Ψ2

A12
N12, where Aψ1ψ2 ⇓ A12.

That is, not only do all aspects ofM evaluate to canonical cubes
of A, but its ψ1ψ2 aspect and the ψ2 aspect of its ψ1 aspect’s value
evaluate to equal canonical cubes of A. We say this ensures M has
coherent aspects. Note that this coherence is not guaranteed by the
operational semantics; it is the role of the type system to carve out
the sensible programs.



As before, we write A pretype [Ψ] when A .
= A pretype [Ψ],

and M ∈ A [Ψ] when M .
= M ∈ A [Ψ]. (We will continue to

abbreviate judgments in this fashion without further comment.) The
judgments A .

=B pretype [Ψ] and M .
=N ∈ A [Ψ] are symmetric

and transitive, so if A .
= B pretype [Ψ] then A pretype [Ψ] and

B pretype [Ψ], and if M .
= N ∈ A [Ψ] then M ∈ A [Ψ]

and N ∈ A [Ψ]. Equal pretypes have equal elements, i.e., if
A
.
=B pretype [Ψ] and M .

=N ∈ A [Ψ], then M .
=N ∈ B [Ψ].

The coherent aspect condition tells us that in a sense, any pair
of dimension substitutions commute with evaluation. If a pretype
is cubical, then the values of any of its cubes’ aspects again have
coherent aspects, and hence arbitrary interleavings of dimension
substitutions and evaluation are coherent, i.e., the act of applying a
dimension substitution and then evaluating is functorial.

Definition 5. We sayA pretype [Ψ] is cubical if for any ψ : Ψ′ →
Ψ and M ≈Ψ′

A0
N (where Aψ ⇓ A0), M .

=N ∈ Aψ [Ψ′].

If we consider only terms M with no free dimension names,
then M = Mψ and the cubical meaning explanations essentially
coincide with the ordinary ones:A .

=B pretype [Ψ] whenA ∼Ψ′ B

for all Ψ′, and M .
=N ∈ A [Ψ] when M ∼Ψ′

A N for all Ψ′.

3.3 Context Restrictions and Kan Conditions
So far, we have explained what a cubical pretype is. A type is a
cubical pretype which is moreover Kan, meaning that it is closed
under the hcom and coe operations in a certain sense. Specifying
the hcom operation in particular is quite challenging, because a
composition scenario is valid in a pretype not only when the cap
and tube faces are elements of that pretype, but when certain faces
of the cap and tube faces are equal elements.

These equalities are called the adjacency conditions, and are
implicit in the diagrams in Section 2.2. For example, in the U-
shaped configuration, M〈ε/x〉 and Nε〈ε/y〉 must be equal points,
while in the box-shaped configuration, each tube face intersects
the cap in a line, and each pair of adjacent tube faces must also
intersect, for a total of eight equalities.

There are a few more subtleties to address. An extent ri can
be 0 or 1, in addition to being a dimension name. Indeed, if the
composite of the U, hcomx

A(0  1,M ; y.N0, y.N1), is meant to
be an x-line from N0〈1/y〉 to N1〈1/y〉, then its 〈0/x〉 face,

hcom0
A〈0/x〉(0 1,M〈0/x〉; y.N0〈0/x〉, y.N1〈0/x〉)

must be a ∅-cube member of A〈0/x〉 equal to N0〈1/y〉. Next,
although we depicted Nε as y-lines and not (x, y)-squares, there
is no reason why the extent x cannot occur in them. Rather than
prohibit this syntactically, we say that any x occurring inNε should
be interpreted as an ε instead. Lastly, two extents ri, rj can be equal
dimension names, in which case two different pairs of tube faces
are exactly superpositioned, and must be equal.

These constraints are all handled elegantly by dimension context
restrictions, which are sets of unoriented equations Ξ = (r1 =
r′1, . . . , rn = r′n) in Ψ. We say that ψ : Ψ′ → Ψ satisfies Ξ if
for each i ∈ [1, n], either riψ = r′iψ = 0, riψ = r′iψ = 1, or
riψ = r′iψ = x. Then:

Definition 6. We say A
.
= B pretype [Ψ | Ξ], presupposing

FD(A,B,Ξ) ⊆ Ψ, when for any ψ : Ψ′ → Ψ satisfying Ξ,
Aψ

.
=Bψ pretype [Ψ′].

Definition 7. We say M
.
= N ∈ A [Ψ | Ξ], presupposing

FD(M,N,A,Ξ) ⊆ Ψ and A pretype [Ψ | Ξ], when for any
ψ : Ψ′ → Ψ satisfying Ξ, Mψ

.
=Nψ ∈ Aψ [Ψ′].

The intuition is that Ξ restricts the ordinary judgment only
to certain faces of the specified terms. Here are some examples,
writing J for either judgment:

• J [Ψ | ·] iff J [Ψ]. By definition, since all ψ satisfy an empty
set of equations, J [Ψ | ·] iff Jψ [Ψ′] for all ψ : Ψ′ → Ψ. But
Jψ [Ψ′] for all ψ iff J [Ψ], because the judgments are closed
under dimension substitution.
• J [Ψ, x | x = 0, x = 1] always, because no ψ can satisfy
xψ = 0 and xψ = 1 simultaneously.
• J [Ψ, x, y | x = 0, y = 1] iff J 〈0/x〉〈1/y〉 [Ψ], because all

dimension substitutions satisfying xψ = 0 and yψ = 1 can be
written as a composition of 〈0/x〉〈1/y〉 and another dimension
substitution.

Definition 8. We say A,B are equally Kan, presupposing A .
=

B pretype [Ψ], if the following five conditions hold:

1. For any ψ : Ψ′ → Ψ, if
(a) M .

=O ∈ Aψ [Ψ′],
(b) Nε

i
.
=Nε′

j ∈ Aψ [Ψ′, y | ri = ε, rj = ε′] for any i ∈ [1, n],
j ∈ [1, n], ε = 0, 1, and ε′ = 0, 1,

(c) Nε
i
.
= P εi ∈ Aψ [Ψ′, y | ri = ε] for any i ∈ [1, n] and

ε = 0, 1, and
(d) Nε

i 〈r/y〉
.
= M ∈ Aψ [Ψ′ | ri = ε] for any i ∈ [1, n] and

ε = 0, 1,
then hcom

−⇀ri
Aψ(r  r′,M ;

−−−⇀
y.Nε

i )
.
=hcom

−⇀ri
Bψ(r  r′, O;

−−⇀
y.P εi ) ∈

Aψ [Ψ′].
2. For any ψ : Ψ′ → Ψ, if

(a) M ∈ Aψ [Ψ′],
(b) Nε

i
.
=Nε′

j ∈ Aψ [Ψ′, y | ri = ε, rj = ε′] for any i ∈ [1, n],
j ∈ [1, n], ε = 0, 1, and ε′ = 0, 1, and

(c) Nε
i 〈r/y〉

.
= M ∈ Aψ [Ψ′ | ri = ε] for any i ∈ [1, n] and

ε = 0, 1,
then hcom

−⇀ri
Aψ(r  r,M ;

−−−⇀
y.Nε

i )
.
=M ∈ Aψ [Ψ′].

3. For any ψ : Ψ′ → Ψ, under the same conditions as above, if
ri = ε for some i then

hcom
−⇀ri
Aψ(r  r′,M ;

−−−⇀
y.Nε

i )
.
=Nε

i 〈r′/y〉 ∈ Aψ [Ψ′].

4. For any ψ : (Ψ′, x) → Ψ, if M .
= N ∈ Aψ〈r/x〉 [Ψ′], then

coer r
′

x.Aψ(M)
.
= coer r

′
x.Bψ(N) ∈ Aψ〈r′/x〉 [Ψ′].

5. For any ψ : (Ψ′, x) → Ψ, if M ∈ Aψ〈r/x〉 [Ψ′], then
coer rx.Aψ(M)

.
=M ∈ Aψ〈r/x〉 [Ψ′].

Definition 9. We say A .
= B type [Ψ], presupposing that A .

=
B pretype [Ψ], when A and B are cubical and equally Kan.

The first Kan condition states that hcom is an element of a type
whenever (a) the cap M is an element, (b) the ε side of the ri tube
is equal to the ε′ side of the rj tube for all i, j, ε, ε′, and (d) the ε
side of the ri tube agrees on its 〈r/y〉 side with the ri = ε side
of the cap; and moreover, hcom respects equality in all arguments
including the type subscript. If ri = x, then by (b) when i = j and
ε = ε′,

Nε
i
.
=Nε

i ∈ Aψ [Ψ′, y | x = ε, x = ε]

which is to say that the entirety of the tube face Nε
i is an element,

where any occurrences of x are replaced by ε. And when i = j but
ε and ε′ are opposite faces,

N0
i
.
=N1

i ∈ Aψ [Ψ′, y | x = 0, x = 1]

which is to say there is no adjacency condition between a tube face
and its opposite tube face. If ri = 0, then we have

N0
i
.
=N0

i ∈ Aψ [Ψ′, y | 0 = 0, 0 = 0]

N1
i
.
=N1

i ∈ Aψ [Ψ′, y | 0 = 1, 0 = 1]

which is to say that the 0 side of the ri tube is an element, and there
are no conditions on the 1 side.



The second Kan condition states that when r = r′ and hcom is
an element, it is equal to its cap M . This condition ensures the
filler of the U, hcomx

A(0  y,M ; y.N0, y.N1), has M as its
〈0/y〉 face. The third condition states that when ri = ε and hcom
is an element, it is equal to Nε

i 〈r′/y〉. This condition ensures the
〈ε/x〉 faces of the filler of the U are Nε, and the 〈ε/x〉 faces of the
composite are Nε

i 〈1/y〉.
The fourth and fifth Kan conditions state that coe along x.A

sends elements of A〈r/x〉 to elements of A〈r′/x〉, and that when
r = r′ it has no effect. All five conditions quantify over ψ to ensure
that being Kan, and hence being a type, is closed under dimension
substitution. Being equally Kan is symmetric and transitive, hence
being a type is as well.

The Kan conditions utilize very specific context restrictions,
so the added machinery is not, strictly speaking, necessary. One
could instead spell out what the context restrictions mean for every
ri, rj , ε, ε

′, but such a definition would be difficult to state or use.
The hcom operation performs homogeneous composition, in

the sense that A cannot depend on y, the dimension in which
r, r′ lie and the tube faces are bound. By combining it with coe,
one can obtain a heterogeneous composition operation com, whose
definition was given in Section 2.3. The analogue of the first Kan
condition is given below; analogues of the second and third Kan
conditions hold as well.

Theorem 10. If A .
=B type [Ψ], ψ : (Ψ′, y)→ Ψ,

1. M .
=O ∈ Aψ〈r/y〉 [Ψ′],

2. Nε
i
.
=Nε′

j ∈ Aψ [Ψ′, y | ri = ε, rj = ε′] for any i, j, ε, ε′,
3. Nε

i
.
= P εi ∈ Aψ [Ψ′, y | ri = ε] for any i, ε,

4. Nε
i 〈r/y〉

.
=M ∈ Aψ〈r/y〉 [Ψ′ | ri = ε] for any i, ε,

then com
−⇀ri
y.Aψ(r  r′,M ;

−−−⇀
y.Nε

i )
.
=com

−⇀ri
y.Bψ(r  r′, O;

−−⇀
y.P εi ) ∈

Aψ〈r′/y〉 [Ψ′].

3.4 Open Cubical Judgments
As before, the open judgments express the truth of a judgment uni-
versally over members of A1, . . . , An. The Ψ specifies at which
dimension the context, pretype, and elements are initially consid-
ered, but one must additionally require the quantification over the
context to hold at all aspects A1ψ, . . . , Anψ. The open judgments
are defined mutually, stratified by the length of the context.

Definition 11. We say (a1 :A1, . . . , an :An) ctx [Ψ] when

A1 pretype [Ψ],

a1 :A1 � A2 pretype [Ψ], . . .

and a1 :A1, . . . , an−1 :An−1 � An pretype [Ψ].

Definition 12. We say a1 :A1, . . . , an :An � B
.
=B′ pretype [Ψ],

presupposing (a1 :A1, . . . , an :An) ctx [Ψ], when for any ψ :
Ψ′ → Ψ and any

N1
.
=N ′1 ∈ A1ψ [Ψ′],

N2
.
=N ′2 ∈ A2ψ[N1/a1] [Ψ′], . . .

and Nn
.
=N ′n ∈ Anψ[N1, . . . , Nn−1/a1, . . . , an] [Ψ′],we have

Bψ[N1, . . . , Nn/a1, . . . , an]
.
= B′ψ[N ′1, . . . , N

′
n/a1, . . . , an] pretype [Ψ′].

Definition 13. We say a1 :A1, . . . , an :An �M
.
=M ′ ∈ B [Ψ],

presupposing a1 :A1, . . . , an :An � B pretype [Ψ], when for

any ψ : Ψ′ → Ψ and any

N1
.
=N ′1 ∈ A1ψ [Ψ′],

N2
.
=N ′2 ∈ A2ψ[N1/a1] [Ψ′], . . .

and Nn
.
=N ′n ∈ Anψ[N1, . . . , Nn−1/a1, . . . , an] [Ψ′],we have

Mψ[N1, . . . , Nn/a1, . . . , an]
.
=M ′ψ[N ′1, . . . , N

′
n/a1, . . . , an]

∈ Bψ[N1, . . . , Nn/a1, . . . , an] [Ψ′].

We say Γ � B
.
= B′ type [Ψ], presupposing Γ � B

.
=

B′ pretype [Ψ], when for any equal members of the context types,
the corresponding instances of B,B′ are equal closed types. We
define context-restricted open judgments Γ� J [Ψ | Ξ] to mean
that Γψ � Jψ [Ψ′] for any ψ : Ψ′ → Ψ satisfying Ξ. Open
analogues of the Kan conditions, and of Theorem 10, hold for equal
open types.

Like the closed judgments, these judgments are all symmetric,
transitive, and closed under dimension substitution. The earlier hy-
potheses in each definition ensure that later hypotheses are sensible;
for example, (a1 :A1, . . . , an :An) ctx [Ψ] and N1 ∈ A1ψ [Ψ′]
ensure that A2ψ[N1/a1] pretype [Ψ′].

Since types are programs, and open judgments are given mean-
ing by substitution, dependency is simply a consequence of allow-
ing types to contain variables. It is natural that types can depend
on dimension names, because if a :A � B type [·] and M is an
x-line of A, then B[M/a] is a type varying in x, with endpoints
B[M〈ε/x〉/a].

4. Types
Now that we have defined the judgments of computational cubi-
cal type theory, we can consider what it means for a cubical type
system to have a type of booleans, of dependent functions, and so
forth. (In general, a cubical type system need not have any types,
which is not particularly interesting!) For each type former, we
prove that any cubical type system closed under it satisfies typ-
ing rules (formation, introduction, elimination, computation, etc.)
similar to those found in the formal cubical type theories of Cohen
et al. [10] and Licata and Brunerie [25]. (All proofs mentioned in
this section can be found the accompanying preprint [4].)

One can interpret this work as an extensional realizability model
of a formal cubical type theory, by modeling the latter judgments
by our computational cubical judgments. However, we hope to
take full advantage of our computational judgments to consider
higher-dimensional analogues of concepts like exact equality [1],
partiality [13], and strict subsets [11] previously considered in
NuPRL.

A selection of rules validated in our model can be found in Fig-
ures 3 and 4. Figure 3 contains rules valid in all cubical type sys-
tems, including various structural rules, the Kan conditions, and
“restriction rules” for deriving the hypotheses of the Kan condi-
tions. Figure 4 contains rules valid in any cubical type system
closed under dependent functions, dependent pairs, identifications,
booleans, the circle, and notx. (Again, we emphasize that these
rules do not define our theory, but are rather theorems about par-
ticular cubical type theories.) For the sake of concision and clar-
ity, these rules are stated in local form, extending them to global
form by uniformity, also called naturality. (This format was sug-
gested by Martin-Löf [29], itself inspired by Gentzen’s original
concept of natural deduction.) In some rules for dependent func-
tion and pair types we have suppressed the hypotheses A type [Ψ]
and a :A� B type [Ψ]; and for identification types, the hypothe-
sis A type [Ψ, x].

Once we have explained when a cubical type system is closed
under the type formers of interest, we still need to demonstrate
that such a cubical type system exists. We do so by explicitly



Structural rules

A type [Ψ]

a :A� a ∈ A [Ψ]

J [Ψ] A type [Ψ]

a :A� J [Ψ]

J [Ψ] ψ : Ψ′ → Ψ

Jψ [Ψ′]

A
.
=A′ type [Ψ]

A′
.
=A type [Ψ]

A
.
=A′ type [Ψ] A′

.
=A′′ type [Ψ]

A
.
=A′′ type [Ψ]

M ′
.
=M ∈ A [Ψ]

M
.
=M ′ ∈ A [Ψ]

M
.
=M ′ ∈ A [Ψ] M ′

.
=M ′′ ∈ A [Ψ]

M
.
=M ′′ ∈ A [Ψ]

M
.
=M ′ ∈ A [Ψ] A

.
=A′ type [Ψ]

M
.
=M ′ ∈ A′ [Ψ]

a :A� B
.
=B′ type [Ψ] N

.
=N ′ ∈ A [Ψ]

B[N/a]
.
=B′[N ′/a] type [Ψ]

a :A�M
.
=M ′ ∈ B [Ψ] N

.
=N ′ ∈ A [Ψ]

M [N/a]
.
=M ′[N ′/a] ∈ B[N/a] [Ψ]

Context restrictions

J [Ψ]

J [Ψ | ·]
J [Ψ | Ξ]

J [Ψ | Ξ, r = r] J [Ψ | Ξ, 0 = 1] J [Ψ, x | x = 0, x = 1]

J 〈ε/x〉 [Ψ]

J [Ψ, x | x = ε]

J 〈ε/x〉〈ε′/y〉 [Ψ]

J [Ψ, x, y | x = ε, y = ε′]

Kan operations

A
.
=A′ type [Ψ]

M
.
=O ∈ A [Ψ]

(∀i, ε) Nε
i
.
= P εi ∈ A [Ψ, y | ri = ε]

(∀i, j, ε, ε′) Nε
i
.
=Nε′

j ∈ A [Ψ, y | ri = ε, rj = ε′]
(∀i, ε) Nε

i 〈r/y〉
.
=M ∈ A [Ψ | ri = ε]

hcom
−⇀ri
A (r  r′,M ;

−−−⇀
y.Nε

i )
.
= hcom

−⇀ri
A′(r  r′, O;

−−⇀
y.P εi ) ∈ A [Ψ]

A type [Ψ]
M ∈ A [Ψ]

(∀i, j, ε, ε′) Nε
i
.
=Nε′

j ∈ A [Ψ, y | ri = ε, rj = ε′]
(∀i, ε) Nε

i 〈r/y〉
.
=M ∈ A [Ψ | ri = ε]

hcom
−⇀ri
A (r  r,M ;

−−−⇀
y.Nε

i )
.
=M ∈ A [Ψ]

A type [Ψ]
M ∈ A [Ψ]

(∀i, j, ε, ε′) Nε
i
.
=Nε′

j ∈ A [Ψ, y | ri = ε, rj = ε′]
(∀i, ε) Nε

i 〈r/y〉
.
=M ∈ A [Ψ | ri = ε]

hcom
r1,...,ri−1,ε,ri+1,...,rn
A (r  r′,M ;

−−−⇀
y.Nε

i )
.
=Nε

i 〈r′/y〉 ∈ A [Ψ]

A
.
=A′ type [Ψ, x] M

.
=N ∈ A〈r/x〉 [Ψ]

coer r
′

x.A (M)
.
= coer r

′

x.A′ (N) ∈ A〈r′/x〉 [Ψ]

A type [Ψ, x] M ∈ A〈r/x〉 [Ψ]

coer rx.A (M)
.
=M ∈ A〈r/x〉 [Ψ]

Figure 3. Rules valid in all cubical type systems.

constructing the smallest cubical type system closed under the type
formers, by means of a fixed point construction [1, 19] starting
from an empty cubical type theory, and adjoining the base types
and all new dependent function, pair, and identification types at
each step. (We adjoin notx whenever the previous type system
has booleans.) Specifically, cubical type systems form a complete
partial order and adjoining these types is a monotone operation—
essentially, it leaves fixed the meanings of all prior types. It follows
that this operation has a fixed point [15, Theorem 8.22], which by
construction is a cubical type system closed under the type formers.

Note, however, that any cubical type system closed under the
type formers is sufficient for our purposes; none of our theorems
hold only in the least such. It is therefore possible to extend our
results with additional type formers (such as universes, full univa-
lence, or more higher inductive types) without affecting the present
constructions.

4.1 Booleans
A cubical type system has booleans if bool ≈Ψ bool for all Ψ, and
≈−bool is the least relation such that:

1. true ≈Ψ
bool true,

2. false ≈Ψ
bool false, and

3. hcom
−⇀xi
bool(r  r′,M ;

−−−⇀
y.Nε

i ) ≈Ψ
bool hcom

−⇀xi
bool(r  r′, O;

−−⇀
y.P εi )

whenever r 6= r′,

(a) M .
=O ∈ bool [Ψ],

(b) Nε
i
.
=Nε′

j ∈ bool [Ψ, y | xi = ε, xj = ε′] for all i, j, ε, ε′,

(c) Nε
i
.
= P εi ∈ bool [Ψ, y | xi = ε] for all i, ε, and

(d) Nε
i 〈r/y〉

.
=M ∈ bool [Ψ | xi = ε] for all i, ε.

Note that ≈Ψ
bool is symmetric because in the third case, (a) and

(c) imply that (b) and (d) also hold for P εi and O. This definition
is mutual across all Ψ, which is visible after one expands the
definitions of the equality judgments.

The canonicity theorem (if M ∈ bool [·] then M ⇓ true or
M ⇓ false) holds trivially by construction, since M ∈ bool [·]
implies M ⇓ M0 and M0 ≈·bool M0, and the hcom case is
impossible in an empty dimension context because it requires free
dimension names. Consistency (that true .= false ∈ bool [Ψ] does
not hold) follows trivially as well.

The first two cases ensure that true and false are ∅-cubes of
bool, and in fact Ψ-cubes (degenerately) for all Ψ. The third case
ensures that bool is Kan by freely adding certain Kan composites
as higher cubes. The operational semantics for hcom in bool (Fig-
ure 2) state that any hcom with an ε extent evaluates to a face
of the corresponding tube face (for the first such extent), and any



Dependent function types

A
.
=A′ type [Ψ] a :A� B

.
=B′ type [Ψ]

(a:A)→ B
.
= (a:A′)→ B′ type [Ψ]

a :A�M
.
=M ′ ∈ B [Ψ]

λa.M
.
= λa.M ′ ∈ (a:A)→ B [Ψ]

M
.
=M ′ ∈ (a:A)→ B [Ψ] N

.
=N ′ ∈ A [Ψ]

app(M,N)
.
= app(M ′, N ′) ∈ B[N/a] [Ψ]

a :A�M ∈ B [Ψ] N ∈ A [Ψ]

app(λa.M,N)
.
=M [N/a] ∈ B[N/a] [Ψ]

M ∈ (a:A)→ B [Ψ]

M
.
= λa.app(M,a) ∈ (a:A)→ B [Ψ]

Dependent pair types

A
.
=A′ type [Ψ] a :A� B

.
=B′ type [Ψ]

(a:A)×B .
= (a:A′)×B′ type [Ψ]

M
.
=M ′ ∈ A [Ψ] N

.
=N ′ ∈ B[M/a] [Ψ]

〈M,N〉 .= 〈M ′, N ′〉 ∈ (a:A)×B [Ψ]

P
.
= P ′ ∈ (a:A)×B [Ψ]

fst(P )
.
= fst(P ′) ∈ A [Ψ]

P
.
= P ′ ∈ (a:A)×B [Ψ]

snd(P )
.
= snd(P ′) ∈ B[fst(P )/a] [Ψ]

M ∈ A [Ψ] N ∈ B[M/a] [Ψ]

fst(〈M,N〉) .=M ∈ A [Ψ]

M ∈ A [Ψ] N ∈ B[M/a] [Ψ]

snd(〈M,N〉) .=N ∈ B[M/a] [Ψ]

P ∈ (a:A)×B [Ψ]

P
.
= 〈fst(P ), snd(P )〉 ∈ (a:A)×B [Ψ]

Identification types

A
.
=A′ type [Ψ, x] P0

.
= P ′0 ∈ A〈0/x〉 [Ψ] P1

.
= P ′1 ∈ A〈1/x〉 [Ψ]

Idx.A(P0, P1)
.
= Idx.A′(P

′
0, P

′
1) type [Ψ]

M
.
=M ′ ∈ A [Ψ, x] M〈0/x〉 .= P0 ∈ A〈0/x〉 [Ψ] M〈1/x〉 .= P1 ∈ A〈1/x〉 [Ψ]

〈x〉M .
= 〈x〉M ′ ∈ Idx.A(P0, P1) [Ψ]

M
.
=M ′ ∈ Idx.A(P0, P1) [Ψ]

M@r
.
=M ′@r ∈ A〈r/x〉 [Ψ]

M ∈ Idx.A(P0, P1) [Ψ]

M@ε
.
= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]

(〈x〉M)@r
.
=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

M ∈ Idx.A(P0, P1) [Ψ]

M
.
= 〈x〉(M@x) ∈ Idx.A(P0, P1) [Ψ]

Booleans

bool type [Ψ] true ∈ bool [Ψ] false ∈ bool [Ψ]

a : bool� A
.
=A′ type [Ψ] M

.
=M ′ ∈ bool [Ψ] T

.
= T ′ ∈ A[true/a] [Ψ] F

.
= F ′ ∈ A[false/a] [Ψ]

ifa.A(M ;T, F )
.
= ifa.A′(M

′;T ′, F ′) ∈ A[M/a] [Ψ]

a : bool� A type [Ψ] T ∈ A[true/a] [Ψ] F ∈ A[false/a] [Ψ]

ifa.A(true;T, F )
.
= T ∈ A[true/a] [Ψ]

a : bool� A type [Ψ] T ∈ A[true/a] [Ψ] F ∈ A[false/a] [Ψ]

ifa.A(false;T, F )
.
= F ∈ A[false/a] [Ψ]

Circle

S1 type [Ψ] base ∈ S1 [Ψ] loopr ∈ S1 [Ψ] loopε
.
= base ∈ S1 [Ψ]

a : S1 � A
.
=A′ type [Ψ] M

.
=M ′ ∈ S1 [Ψ]

P
.
= P ′ ∈ A[base/a] [Ψ] L

.
= L′ ∈ A[loopx/a] [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ A[base/a] [Ψ]

S1-elima.A(M ;P, x.L)
.
= S1-elima.A′(M

′;P ′, x.L′) ∈ A[M/a] [Ψ]

a : S1 � A type [Ψ] L ∈ A[loopx/a] [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ A[base/a] [Ψ]

S1-elima.A(base;P, x.L)
.
= P ∈ A[base/a] [Ψ]

a : S1 � A type [Ψ] L ∈ A[loopx/a] [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ A[base/a] [Ψ]

S1-elima.A(loopr;P, x.L)
.
= L〈r/x〉 ∈ A[loopr/a] [Ψ]

notx

notr type [Ψ] notε
.
= bool type [Ψ]

M ∈ bool [Ψ]

coe0 1
x.notx(M)

.
= not(M) ∈ bool [Ψ]

M ∈ bool [Ψ]

coe1 0
x.notx(M)

.
= not(M) ∈ bool [Ψ]

Figure 4. Rules valid in cubical type systems with the appropriate type formers.



hcom with r = r′ evaluates to its cap. These ensure the second
and third Kan conditions, respectively. The remaining hcoms, those
with r 6= r′ and all extents xi, are irreducible and are canonical Ψ-
cubes of bool to ensure the first Kan condition.

That the operational semantics examines the extents from left to
right and before r and r′ is an arbitrary choice to ensure determi-
nacy. If both ri = ε and r = r′, for example, then the hcom steps
to Nε

i 〈r′/y〉 but by the second Kan condition it must be equal to
M . This holds because, by adjacency condition (d), Nε

i 〈r/y〉 and
M are themselves equal.

Since bool has no path constructors, we could alternatively
define it “strictly,” with canonical Ψ-cubes true and false only, and
composites of true evaluating to true, and so forth. Here we opt
to make its composites canonical as in any higher inductive type,
to demonstrate the robustness of our canonicity theorem and our
treatment of notx. In practice, however, the strict booleans may
be more convenient to use; we define them in the accompanying
preprint [4].

We prove that closed versions of the formation, introduc-
tion, elimination, and computation rules located in Figure 4 hold
in any cubical type system with booleans. The formation rule
bool type [Ψ] requires bool to be a pretype, Kan, and cubical.
The generalizations of these rules to open elements follows by the
definition of the open judgments, the respect for equality built into
the introduction and elimination rules, and the fact that dimension
and term substitutions commute with the term formers.

When eliminating into a : bool � A type [Ψ] and the prin-
cipal argument evaluates to hcom

−⇀xi
bool(r  r′,M ;

−−−⇀
y.Nε

i ), we
would like to step this to a composition of ifa.A(M ;T, F ) and
ifa.A(Nε

i ;T, F ) in A, but these have different types A[M/a] and
A[Nε

i /a] respectively. The solution is to perform a heterogeneous
composition in A[H/a], where H is the filler for the above hcom,
a type which has A[M/a] and A[Nε

i /a] as its faces.

4.2 Circle
A cubical type system has the circle if S1 ≈Ψ S1 for all Ψ, and
≈−S1 is the least relation such that:

1. base ≈Ψ
S1 base,

2. loopx ≈Ψ
S1 loopx, and

3. hcom
−⇀xi
S1 (r  r′,M ;

−−−⇀
y.Nε

i ) ≈Ψ
S1 hcom

−⇀xi
S1 (r  r′, O;

−−⇀
y.P εi )

whenever r 6= r′,

(a) M .
=O ∈ S1 [Ψ],

(b) Nε
i
.
=Nε′

j ∈ S1 [Ψ, y | xi = ε, xj = ε′] for all i, j, ε, ε′,

(c) Nε
i
.
= P εi ∈ S1 [Ψ, y | xi = ε] for all i, ε, and

(d) Nε
i 〈r/y〉

.
=M ∈ S1 [Ψ | xi = ε] for all i, ε.

This is very similar to our definition of having booleans, except that
S1 has a path constructor loopx.

If a cubical type system has the circle, then the formation,
introduction, elimination, and computation rules in Figure 4 hold.
To eliminate into a : S1 � A type [Ψ], one must provide a point
P ∈ A[base/a] [Ψ] and a loop L ∈ A[loopx/a] [Ψ, x] with
endpoints P .

4.3 Dependent Functions
If a cubical type system has A .

= A′ type [Ψ] and a :A � B
.
=

B′ type [Ψ], we say it also has their dependent function type when
for all ψ : Ψ′ → Ψ, (a:Aψ)→ Bψ ≈Ψ′ (a:A′ψ)→ B′ψ, and
≈Ψ′

(a:Aψ)→Bψ is the least relation such that

λa.M ≈Ψ′

(a:Aψ)→Bψ λa.M
′

when a :Aψ � M
.
= M ′ ∈ Bψ [Ψ′]. A cubical type system is

closed under dependent functions if it has all dependent function
types in this sense.

Recalling the meaning of the open judgments, this essentially
states that a Ψ-cube (resp., equal Ψ-cubes) of (a:A) → B is
a program that evaluates to a lambda whose body sends equal
elements N .

=N ′ ∈ Aψ [Ψ′] to equal elements of Bψ[N/a].
The Kan operations on (a:A) → B are implemented in the

operational semantics (Figure 2) using the Kan operations of A
and (instances of) B. For example, coercing a function from r to r′

works by coercing its argument backwards from r′ to r, applying
the function, and coercing the result forward from r to r′.

If a cubical type system has A .
= A′ type [Ψ], a :A � B

.
=

B′ type [Ψ], and their dependent function type, then the formation,
introduction, elimination, computation, and eta rules in Figure 4
hold.

4.4 Dependent Pairs
If a cubical type system has A .

= A′ type [Ψ] and a :A � B
.
=

B′ type [Ψ], we say it also has their dependent pair type when
for all ψ : Ψ′ → Ψ, (a:Aψ)×Bψ ≈Ψ′ (a:A′ψ)×B′ψ, and
≈Ψ′

(a:Aψ)×Bψ is the least relation such that

〈M,N〉 ≈Ψ′

(a:Aψ)×Bψ 〈M ′, N ′〉

when M .
= M ′ ∈ Aψ [Ψ′] and N .

= N ′ ∈ Bψ[M/a] [Ψ′]. A
cubical type system is closed under dependent pairs if it has all
dependent pair types in this sense.

If a cubical type system has A .
= A′ type [Ψ], a :A � B

.
=

B′ type [Ψ], and their dependent pair type, then the formation,
introduction, elimination, computation, and eta rules in Figure 4
hold.

4.5 Identification Types
If a cubical type system has A .

= A′ type [Ψ, x], P0
.
= P ′0 ∈

A〈0/x〉 [Ψ], and P1
.
= P ′1 ∈ A〈1/x〉 [Ψ], we say it has their iden-

tification type when for all ψ : Ψ′ → Ψ, Idx.Aψ(P0ψ, P1ψ) ≈Ψ′

Idx.A′ψ(P ′0ψ, P
′
1ψ), and ≈Ψ′

Idx.Aψ(P0ψ,P1ψ) is the least relation
such that

〈x〉M ≈Ψ′

Idx.Aψ(P0ψ,P1ψ) 〈x〉M ′

whenM .
=M ′ ∈ Aψ [Ψ′, x] andM〈ε/x〉 .=Pεψ ∈ Aψ〈ε/x〉 [Ψ′]

for all ε. A cubical type system is closed under identifications if it
has all identification types in this sense.

Ψ-cubes of Idx.A(P0, P1) are thus programs that evaluate to
abstracted (Ψ, x)-cubes of A whose 〈ε/x〉 faces are Pε. Hence
the identification type simply captures the notion of a dimension
shift. Kan composition in Idx.A(P0, P1) performs composition in
A, adding P0, P1 as an additional set of tube faces to constrain the
faces of the composite.

If a cubical type system has A .
= A′ type [Ψ, x], P0

.
= P ′0 ∈

A〈0/x〉 [Ψ], P1
.
= P ′1 ∈ A〈1/x〉 [Ψ], and their identification type,

then the formation, introduction, elimination, computation, and eta
rules in Figure 4 hold.

This cubical formulation of identification types is a signifi-
cant departure from the identity type of the HoTT Book [40].
These types can be related, however. For example, for any M ∈
A [Ψ] we have a reflexive identification 〈 〉M ∈ Id .A(M,M) [Ψ];
for any type family a :A � B type [Ψ], identification P ∈
Id .A(P0, P1) [Ψ], and elementM ∈ B[P0/a] [Ψ] of the type fam-
ily at the left endpoint we have a transport of that element to the
right endpoint: coe0 1

x.B[P@x/a](M) ∈ B[P1/a] [Ψ].



4.6 Not
If a cubical type system has booleans, we say it has the notx type
when notx ≈Ψ,x notx for all Ψ, and ≈Ψ,x

notx is the least relation
such that:

notelx(M) ≈Ψ,x
notx notelx(M ′)

when M .
=M ′ ∈ bool [Ψ, x].

The univalence axiom postulates an equivalence between the
equivalences and identifications between types in a universe. The
present theory lacks a universe and so cannot directly express this
principle. However, a salient consequence of univalence is that
every equivalence between two types gives rise to a line between
those types, that when coerced along, applies the equivalence.

notx is the instance of this principle arising from the equiva-
lence not(−) := if .bool(−; false, true) between bool and itself: it
is an x-line between bool and itself, and when M ∈ bool [Ψ],

coe1 0
x.notx(M)

.
= not(M) ∈ bool [Ψ].

Distinguish this from the degenerate line bool, for which

coe1 0
x.bool(M)

.
=M ∈ bool [Ψ].

In ordinary homotopy type theory, univalence has no elements;
notx has elements in cubical type theory because coe1 x

x.notx(M) ∈
notx [Ψ, x] is an x-line between not(M〈0/x〉) and M〈1/x〉. In
fact, this line evaluates to notelx(M).

If a cubical type system has booleans and notx, the rules in
Figure 4 hold.

5. Related and Future Work
Many authors contributed to the discovery of higher-dimensional
structure in type theory and its relation to homotopy theory. The
key contributors to these discoveries include Awodey and Warren
[7], Hofmann and Streicher [22], van den Berg and Garner [41],
Voevodsky [42], Warren [46]. Many ideas were consolidated and
advanced during a year-long program at the IAS in Princeton, much
of which is documented in the HoTT Book [40], and which is being
carried forward in the UniMath Project [43, 45].

Apart from the over-arching influence of Martin-Löf and Con-
stable, the most direct influences on the present work are the cu-
bical model of homotopy type theory given by Bezem et al. [8],
its relationship to nominal sets as described by Pitts [33], and the
subsequent formal cubical type theories of Licata and Brunerie
[25] and Cohen et al. [10]. The cubical model of Bezem et al. [8]
uses cubes equipped with only faces and degeneracies, while Co-
hen et al. [10] employs a de Morgan algebra structure on cubes,
consisting of not only faces, degeneracies, and diagonals, but also
reversals and connections. While the cubical structure of Cohen
et al. [10] is more complex than ours, their notion of composi-
tion is in a sense simpler: composition is heterogeneous and always
0  1, but tube faces attach along arbitrary aspects and need not
be paired. More importantly, their theory includes universes and
full univalence. The theory sketched by Licata and Brunerie [25] is
incomplete but most similar to ours. The relationship between these
different notions of uniform Kan composition over different cube
categories is not presently well understood; Gambino and Sattler
[17] have studied the relationship between uniform Kan composi-
tion and algebraic weak factorization systems [18].

The results described in this paper and its associated preprints
[4, 5] present the first canonicity result for a higher-dimensional
type theory. Huber [23] has since established a canonicity theorem
for the formal cubical type theory of Cohen et al. [10]; the tech-
nique used in that proof bears a resemblance to ours, including a
similar coherence condition about interleaving dimension substi-
tutions and evaluation. A key difference (in addition to those de-
scribed above) is that the reduction relation of Huber [23] is defined

only on structurally well-typed terms, whereas our operational se-
mantics is untyped. It would be interesting to adapt our work as a
computational semantics for their type theory.

This paper represents the first step in the development of com-
putational higher-dimensional type theory; much remains to be
done. Just as logical relations enable reasoning about higher-order
constructs in programming languages, our cubical logical rela-
tions are an important first step toward understanding the role of
higher dimensions. While programming applications of higher-
dimensional type theory remain largely unexplored, developing a
concrete operational semantics is essential for both future and pre-
existing work in that area, such as the implementations of patch
theories as higher inductive types given by Angiuli et al. [6].

One important direction for future work is to develop a com-
putational account of the full univalence axiom. From our point of
view the univalence principle is not tied to a universe per se, but to
the very concept of a type—we consider that universes are restric-
tions of the “multiverse” of all types to evade Girard’s paradox.

Another important direction is to develop further typing con-
structs in the higher-dimensional setting, including the numerous
ideas developed in NuPRL, including partial types [13], inductive
types [12], and subset types [11], and to consider programming
constructs such as general recursion [13], bar recursion [35], and
exceptions [34]. Another direction is to develop a proof theory and
implementation for the type theory considered here. Efforts to this
end are currently underway in the nascent RedPRL system [37].
Finding useful proof theories for higher type theory poses some
challenges. The formal cubical type theory proposed by Licata and
Brunerie [25] is sound for the meaning explanations given here,
and may be a good start. More ambitiously, it would be interesting
to develop methods for handling both exact equality and identifica-
tion in the same setting, which requires a proof theory that can deal
with both pretypes and types. Voevodsky’s HTS type theory [44]
provides some useful initial ideas. All of these extensions, espe-
cially the exact equality type, could prove helpful when mechaniz-
ing synthetic homotopy theory.

As has historically been the case prior to the development of
higher type theory, there is ample room for exploration of the re-
lationship between and the practical use of both the computational
and formal approaches to type theory.
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[28] P. Martin-Löf. Constructive mathematics and computer programming.
Philosophical Transactions of the Royal Society of London Series A,
312:501–518, Oct. 1984. doi: 10.1098/rsta.1984.0073.
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