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The STLC is a good starting point for understanding the syntax and semantics
of typed functional programming languages, but it lacks many features of realistic
languages, perhaps most notably recursion. In this lecture we will consider several
core language features that enable recursive definitions: first at the term level, and
then at the type level.

We will start by considering PCF (Programming Computable Functions), a
famous core calculus first conceived of (but not published) in 1969 by Scott [Sco93],
and further developed and popularized by Plotkin [Plo77]. Despite PCF’s apparent
simplicity, the development of a satisfactory denotational semantics for PCF—the
so-called full abstraction problem—was one of the biggest open problems in pro-
gramming language theory for over two decades until its resolution by Abramsky,
Jagadeesan, and Malacaria [AJM00] and Hyland and Ong [HO00]. After that we
will consider isorecursive types, an extension to PCF which brings us surprisingly
close to typed functional programming languages such as OCaml and Haskell.

PCF and isorecursive types are respectively covered in Chapters 19 and 20 of
Harper [Har16]; we will also touch on topics discussed in Chapters 9 (System T),
15 (inductive and coinductive types), and 47 (equational reasoning for PCF).

1 Recursion via fixed points

Realistic programming languages all come with mechanisms for defining—giving
names to—constants and functions. (In the presence of 𝜆, the latter can often be
treated as a special case of the former.) Although definition mechanisms can cer-
tainly be interesting in their own right [Gra+22], it is typical to think of definitions
as purely a convenience feature allowing us to abbreviate large terms.
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For example, when we wrote:

to : (𝐴 × (𝐵 ×𝐶)) → ((𝐴 × 𝐵) ×𝐶)
to := 𝜆𝑥 : 𝐴 × (𝐵 ×𝐶) .((fst(𝑥), fst(snd(𝑥))), snd(snd(𝑥)))

we understood that to is just a shorthand for the large 𝜆 expression to the right of
to := . . . , to be treated as completely interchangeable with to.

However, in real programming languages, function definitions are also a source
of self-reference: that is, the body of a named function is allowed to mention the
very same function that is currently being defined.

(define (fact n)
(if (zero? n)

1
(* n (fact (sub1 n)))))

We can still think of this as a “defining equation” for fact,

fact = (𝜆 (n) (if (zero? n) 1 (* n (fact (sub1 n)))))

but although though the left-hand side can be replaced by the right-hand side, the
meaning of the equation is much less clear: fact appears on both the left- and the
right-hand sides, so it is much more than just an abbreviation! Turning it into an
abbreviation requires solving for fact, turning it into an equation of the form

fact = [some expression not mentioning fact]

But this is easier said than done. For one thing, we have not yet seen any
mechanism for defining interesting functions such as fact on natural numbers.
Besides, equations between terms may in general have multiple solutions:

f = f

or even no solutions:
∞ = suc(∞)

We can recast the problem of solving equations—or indeed systems of equations,
in the case of mutually-recursive functions—in terms of finding fixed points of
functionals.8 (Recall that a fixed point of a function 𝑓 : 𝑋 → 𝑋 is some 𝑥 ∈ 𝑋 for
which 𝑓 (𝑥) = 𝑥 .) In the case of fact, we define the (non-recursive!) functional
𝐹 : (nat → nat) → (nat → nat) as follows:

𝐹 (𝑓 ) := (𝜆 (n) (if (zero? n) 1 (* n (𝑓 (sub1 n)))))

8“Functionals” are what mathematicians call higher-order functions.
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It is easy to see that any fixed point of 𝐹 (any 𝑓 for which 𝐹 (𝑓 ) = 𝑓 ) will be a
solution to the defining equation of fact.

The language PCF, which we will define momentarily, provides a mechanism
for computing fixed points of functionals (actually, of arbitrary functions 𝜏 → 𝜏)
by successive approximation, which we will use in Section 3 to define recursive
functions such as fact. Before introducing the syntax of PCF, let us quickly sketch
how the definition of fact can be seen as the limit of a sequence of approximations.

Functions in PCF are actually partial functions, which are like functions that
may not be defined on all inputs. We can imagine that the zeroth-order approxi-
mation to fact is a function that is nowhere defined:

fact0 := (𝜆 (n) (error "undefined"))

This function bears little resemblance to the actual factorial function, but it
has type nat → nat so it is a valid input to the functional 𝐹 .

fact1 := 𝐹 (fact0) := (𝜆 (n) (if (zero? n) 1 (* n (fact0 (sub1 n)))))

We see that fact1 returns the correct answer on 0 but will throw an error on
𝑛 ≥ 1. Going one more round,

fact2 := 𝐹 (fact1) := (𝜆 (n) (if (zero? n) 1 (* n (fact1 (sub1 n)))))

is even closer to fact, working for 0 and (because fact1 works on 0) also 1.
There are two important things to note. First, for any finite 𝑛, fact𝑛 is em-

phatically not a fixed point of 𝐹 and thus not a solution to the defining equation of
fact; rather, fact𝑛 = 𝐹 (fact𝑛−1). But it is a kind of approximate solution, in the
sense that fact𝑛 behaves just like fact up to recursion depth 𝑛.

In fact, one can make precise the idea that fact—or more precisely, the smallest
solution to the defining equation of fact—is the limit of these approximations:

lim
𝑛→∞

fact𝑛

or the result of infinitely iterating the functional 𝐹 on fact0: 𝐹 (𝐹 (· · · (𝐹 (fact0)))).

2 PCF

In what is now a familiar pattern, we will quickly run through the syntax, type
system, and operational semantics of PCF, and prove type safety.
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2.1 Syntax

Different authors present PCF’s syntax differently, and as with the STLC, one can
and typically does extend PCF with various type formers. The canonical starting
point, which we present below, is to include natural numbers and functions in
addition to PCF’s signature feature, a fixed point operator for arbitrary types.

Types 𝜏 ::= nat nat natural numbers
arr(𝜏1, 𝜏2) 𝜏1 → 𝜏2 (partial) functions

Terms 𝑒 ::= zero zero zero
suc(𝑒) suc(𝑒) successor
casenat(𝑒, 𝑒𝑧, 𝑥 .𝑒𝑠) casenat 𝑒 [zero → 𝑒𝑧] case analysis for nat

[suc(𝑥) → 𝑒𝑠]
lambda(𝜏, 𝑥 .𝑒) 𝜆𝑥 : 𝜏 .𝑒 𝜆-abstraction
app(𝑒1, 𝑒2) 𝑒1 𝑒2 application
fix(𝜏, 𝑥 .𝑒) fix 𝑥 : 𝜏 is 𝑒 fixed point operator

The syntax, typing rules, and operational semantics of function types remain
unchanged from the STLC, but we reproduce them in these notes for completeness.
Product and sum types can also be included with no changes.
Remark 8.1. The casenat term is slightly nonstandard; a more common (but
equivalent) version is to include a predecessor function and an “if zero” term
ifz(𝑒, 𝑒𝑧, 𝑒𝑠) that steps to 𝑒𝑧 if 𝑒 evaluates to zero and 𝑒𝑠 otherwise. Note that
Harper [Har16] uses casenat but calls it ifz.

2.2 Type system

There are only two interesting typing rules, those for casenat and fix.
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Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
var

Γ ⊢ zero : nat
nat-intro1

Γ ⊢ 𝑒 : nat
Γ ⊢ suc(𝑒) : nat

nat-intro2

Γ ⊢ 𝑒 : nat Γ ⊢ 𝑒𝑧 : 𝜏 Γ, 𝑥 : nat ⊢ 𝑒𝑠 : 𝜏
Γ ⊢ casenat 𝑒 [zero → 𝑒𝑧] [suc(𝑥) → 𝑒𝑠] : 𝜏

nat-case

Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2

→-intro
Γ ⊢ 𝑓 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒1 : 𝜏1

Γ ⊢ 𝑓 𝑒1 : 𝜏2
→-elim

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏
Γ ⊢ fix 𝑥 : 𝜏 is 𝑒 : 𝜏

fix

The nat-case rule is very similar to the +-elim rule, and for good reason: terms
of type nat should intuitively be either zero or suc(𝑒) for 𝑒 : nat, so given a term
of type nat, we can “case” (or “match”) on whether it is the former or the latter. In
the latter case, there is data inside the constructor to be passed to the suc branch.

What’s unusual about nat and casenat in comparison to 𝜏1+𝜏2 and case is that
case “simplifies” the situation of having a term of type 𝜏1 + 𝜏2 into the situations
of having a term of type 𝜏1 or a term of type 𝜏2, whereas the suc branch of casenat
“simplifies” having a term of type nat to having a term of type nat. (Of course,
this is to be expected, because suc creates a nat out of a nat.)
Remark 8.2. In fact, there is a precise sense in which we can think of nat as being
the sum type unit + nat. More on this later.
Exercise 8.3. Define the predecessor function in terms of casenat.

The fix operator is unusual in that its typing rule does not mention any
particular type constructor in either the premise or conclusion. Note that we can
think of fix as a function (𝜏 → 𝜏) → 𝜏 which, as we will see, returns a fixed point
of its input function.

The typing judgment of PCF satisfies the usual lemmas.

Lemma 8.4 (Uniqueness of types). If Γ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒 : 𝜏 ′ then 𝜏 = 𝜏 ′.

Lemma 8.5 (Weakening). If Γ ⊢ 𝑒 : 𝜏 and 𝜏 ′ ty then Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 .

Lemma 8.6 (Substitution). If Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 ′ then Γ ⊢ 𝑒 [𝑒′/𝑥] : 𝜏 .
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2.3 Operational semantics

By this point you should be able to guess the operational semantics of casenat, so
the only particularly interesting rule here is the one for fix.

zero val

𝑣 val

suc(𝑣) val 𝜆𝑥 : 𝜏 .𝑒 val

𝑓 ↦−→ 𝑓 ′

𝑓 𝑒1 ↦−→ 𝑓 ′ 𝑒1

𝑒1 ↦−→ 𝑒′1

(𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ (𝜆𝑥 : 𝜏1.𝑒2) 𝑒′1

𝑣1 val

(𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 ↦−→ 𝑒2 [𝑣1/𝑥]
𝑒 ↦−→ 𝑒′

casenat 𝑒 [zero → 𝑒𝑧] [suc(𝑥) → 𝑒𝑠] ↦−→
casenat 𝑒

′ [zero → 𝑒𝑧] [suc(𝑥) → 𝑒𝑠]

casenat zero [zero → 𝑒𝑧] [suc(𝑥) → 𝑒𝑠] ↦−→ 𝑒𝑧

𝑣 val

casenat suc(𝑣) [zero → 𝑒𝑧] [suc(𝑥) → 𝑒𝑠] ↦−→ 𝑒𝑠 [𝑣/𝑥]

fix 𝑥 : 𝜏 is 𝑒 ↦−→ 𝑒 [(fix 𝑥 : 𝜏 is 𝑒)/𝑥]

The operational semantics of PCF satisfy the usual lemmas.

Lemma 8.7 (Finality of values). If 𝑣 val then there is no 𝑒′ such that 𝑣 ↦−→ 𝑒′.

Lemma 8.8 (Determinacy). If 𝑒 ↦−→ 𝑒′ and 𝑒 ↦−→ 𝑒′′ then 𝑒′ = 𝑒′′.

2.4 Type safety

This isn’t the interesting part of PCF either. We can prove type safety via canonical
forms (Lemma 8.10), progress (Lemma 8.11), and preservation (Lemma 8.13).

Theorem 8.9 (Type safety).

1. If · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ : 𝜏 .

2. If · ⊢ 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′.

Lemma 8.10 (Canonical forms). Suppose · ⊢ 𝑣 : 𝜏 and 𝑣 val. Then:
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1. If 𝜏 = nat, then 𝑣 = zero or 𝑣 = suc(𝑣 ′) where 𝑣 ′ val and · ⊢ 𝑣 ′ : nat.

2. If 𝜏 = 𝜏1 → 𝜏2, then 𝑣 = 𝜆𝑥 : 𝜏1.𝑒2 where 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2.

Lemma 8.11 (Progress). If · ⊢ 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′ for some 𝑒′.

Proof. By rule induction on · ⊢ 𝑒 : 𝜏 . We consider only the fix rule.

• Case
𝑥 : 𝜏 ⊢ 𝑒 : 𝜏

· ⊢ fix 𝑥 : 𝜏 is 𝑒 : 𝜏
fix :

This always takes a step to 𝑒 [(fix 𝑥 : 𝜏 is 𝑒)/𝑥]. □

Remark 8.12. Note that if 𝑒 = 𝑥 , then fix steps to itself:

fix 𝑥 : 𝜏 is 𝑥 ↦−→ 𝑥 [(fix 𝑥 : 𝜏 is 𝑥)/𝑥] = fix 𝑥 : 𝜏 is 𝑥

A term that steps to itself could perhaps be considered “stuck” in some sense, but
it doesn’t break type safety. For the purposes of type safety, recall that a “stuck”
term is one whose behavior is unspecified by the operational semantics: a term
which is neither a value nor takes a step.

Lemma 8.13 (Preservation). If · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ : 𝜏 .

Proof. By rule induction on 𝑒 ↦−→ 𝑒′. We consider only the fix rule.

• Case
fix 𝑥 : 𝜏 is 𝑒 ↦−→ 𝑒 [(fix 𝑥 : 𝜏 is 𝑒)/𝑥]

:

We must show · ⊢ 𝑒 [(fix 𝑥 : 𝜏 is 𝑒)/𝑥] : 𝜏 . By inversion on the typing
judgment · ⊢ fix 𝑥 : 𝜏 is 𝑒 : 𝜏 , we have 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 . The result follows by
Lemma 8.6. □

What we do not have, for the first time, is termination. Indeed, by Remark 8.12,
at every type 𝜏 there is at least one well-typed closed term, fix 𝑥 : 𝜏 is 𝑥 , which
steps to itself forever.

3 Programming in PCF

Let us return to the fact example from earlier. Rewriting the defining equation of
fact and the associated functional 𝐹 using casenat, we have:

fact = 𝜆𝑛 : nat.casenat 𝑛 [zero → suc(zero)] [suc(𝑥) → mult 𝑛 (fact 𝑥)]

and 𝑓 : nat → nat ⊢ 𝐹 : nat → nat where
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𝐹 := 𝜆𝑛 : nat.casenat 𝑛 [zero → suc(zero)] [suc(𝑥) → mult 𝑛 (𝑓 𝑥)]

where we assume that mult : nat → nat → nat is provided.
Then writing fact for the genuine abbreviation

fact := fix 𝑓 : nat → nat is 𝐹

we can compute

fact ↦−→ 𝐹 [fact/𝑓 ]
= 𝜆𝑛 : nat.casenat 𝑛 [zero → suc(zero)] [suc(𝑥) → mult 𝑛 (fact 𝑥)]

We can think of fix and thus fact as “expanding on demand,” unfolding one
additional round of 𝐹 every time that evaluation encounters the term fact. (This
is the sense in which fact is an infinite number of applications of 𝐹 (𝐹 (. . . (𝐹 .) It
is tedious but possible to check that (assuming mult is correct) the fact function
will compute the factorial of any natural number.
Remark 8.14. In Section 1 we described the base case fact0 as the error function,
but because there is no error in PCF, it is perhaps better to think of the base case
as a function that diverges on all inputs.
Remark 8.15. In light of Remark 8.14, we can understand the infinitely-looping
term fix 𝑥 : 𝜏 is 𝑥 as the limit of successive approximations of the identity
function I : 𝜏 → 𝜏 . If we define loop0 : 𝜏 as a term that infinitely loops, we
can see that the limit lim𝑛→∞ I𝑛 (loop0) also infinitely loops. (Note that because
fix is not restricted to function types, we can use it to compute fixed points of
non-higher-order functions such as I!)

3.1 Structural recursion for natural numbers

The factorial function is a very well-behaved recursive function on the natural
numbers. Not only does it terminate on all inputs · ⊢ 𝑛 : nat, but it makes no
recursive calls in the zero case and exactly one recursive call in the suc(𝑚) case,
to fact𝑚. Thus computing fact 𝑛 requires exactly 𝑛 − 1 fixed point unfoldings.

Contrast this with the (naïve) Fibonacci function, which terminates but has a
more complex call graph:

(define (fib n)
(if (or (zero? n) (= n 1))

1
(+ (fib (- n 1)) (fib (- n 2)))))
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or even the (iterated) Collatz function, whose recursive calls are even stranger and
whose termination is an open problem.

(define (collatz n)
(cond
[(= n 1) 1]
[(even? n) (collatz (/ n 2))]
[(odd? n) (collatz (add1 (* 3 n)))]))

Functions on the natural numbers such as fact—whose recursion pattern
directly mirrors the structure of the natural numbers—

(define (f n)
(if (zero? n)

...
(... (f (sub1 n)) ...)))

are called structurally recursive. Structural recursion is much less powerful than
arbitrary or general recursion, and although general-purpose programming lan-
guages typically do not distinguish between these forms of recursion, it is quite
useful to do so. In particular, structurally-recursive functions terminate on all
inputs, requiring exactly 𝑛 − 1 unfoldings to compute their value on 𝑛.

There is a famous language, Gödel’s System T [Har16, Chapter 9], which
replaces PCF’s fix with a structural recursion principle for nat called natrec.
This principle is similar to casenat but provides the suc(𝑛) case with both 𝑛 and
the result of the recursive call on 𝑛.

Γ ⊢ 𝑒 : nat Γ ⊢ 𝑒𝑧 : 𝜏 Γ, 𝑥 : nat, 𝑦 : 𝜏 ⊢ 𝑒𝑠 : 𝜏
Γ ⊢ natrec(𝑒, 𝑒𝑧, 𝑥 .𝑦.𝑒𝑠) : 𝜏

nat-elim

𝑒 ↦−→ 𝑒′

natrec(𝑒, 𝑒𝑧, 𝑥 .𝑦.𝑒𝑠) ↦−→ natrec(𝑒′, 𝑒𝑧, 𝑥 .𝑦.𝑒𝑠)

natrec(zero, 𝑒𝑧, 𝑥 .𝑦.𝑒𝑠) ↦−→ 𝑒𝑧

𝑣 val

natrec(suc(𝑣), 𝑒𝑧, 𝑥 .𝑦.𝑒𝑠) ↦−→ 𝑒𝑠 [𝑣/𝑥] [natrec(𝑣, 𝑒𝑧, 𝑥 .𝑦.𝑒𝑠)/𝑦]

Exercise 8.16. Show that natrec is definable in PCF in terms of fix and casenat.
Remark 8.17. Perhaps the starkest difference between structural recursion and
general recursion is that the former always terminates whereas the latter may not.
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However, even terminating general recursive definitions are harder to analyze:
as the Collatz example shows, they may make arbitrarily many recursive calls,
whereas we have an exact bound on the number of recursive calls required to
evaluate a structurally-recursive function.

That said, PCF functions satisfy a compactness property [Har16, Theorem
47.15] which roughly states that if · ⊢ 𝑒 : nat terminates, then every fix term
inside of 𝑒 can be replaced by some finite approximation. That is, every fix in a
terminating computation must only be unfolded finitely many times.

3.2 Fixed points and laziness

lazy PCF is quite different from eager PCF; in particular, we get infinite
terms like ∞ = suc(∞)
talk about denotational semantics?

4 Isorecursive types

Let us revisit Remark 8.2, in which we said that the nat-case rule

Γ ⊢ 𝑒 : nat Γ ⊢ 𝑒𝑧 : 𝜏 Γ, 𝑥 : nat ⊢ 𝑒𝑠 : 𝜏
Γ ⊢ casenat 𝑒 [zero → 𝑒𝑧] [suc(𝑥) → 𝑒𝑠] : 𝜏

nat-case

looks like a special case of case in which nat is the sum type unit + nat (where
the left disjunct corresponds to zero and the right disjunct corresponds to suc).
Indeed, if we add products and sums to PCF, we can define an isomorphism
nat � unit + nat:

to : nat → (unit + nat)
to := 𝜆𝑛 : nat.casenat 𝑛 [zero → inl(())] [suc(𝑥) → inr(𝑥)]

from : (unit + nat) → nat

from := 𝜆𝑧 : (unit + nat) .case 𝑧 [inl(𝑥) → zero] [inr(𝑦) → suc(𝑦)]

We can actually think of nat � unit + nat as the “defining isomorphism” of
nat, in much the same way that

fact = (𝜆 (n) (if (zero? n) 1 (* n (fact (sub1 n)))))

is the defining equation of fact. We say that nat is a recursive type—a type
defined in terms of itself—in much the same way that fact is a recursive term. The
reason that the suc branch of casenat binds a variable of type nat is that the suc
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constructor builds a natural number out of another natural number, in much the
same way that fact computes factorials in terms of fact.

Following our analysis of recursive terms in PCF, we want to “solve for nat,”
turning it into an isomorphism

nat � [some type expression not mentioning nat]

and we can recast this problem as finding a fixed point of a type-level function
𝐹 (𝜏) := unit + 𝜏 .
Remark 8.18. There are of course a few differences between nat and fact, but the
situation is more similar than it may seem. First, obviously, one is a type and one is
a term. Secondly, nat is isomorphic, not equal, to a type expression involving itself.
(But there is a variation of this story in which nat is actually equal to unit + nat.)
Thirdly, unlike higher-order functions, we do not have a preexisting notion of
“type-level function.” (Nor will we introduce one, although it does make sense.)

Fixed points (up to isomorphism) of type equations are known as isorecursive
types. We will write 𝜇𝛼.(unit + 𝛼) for the least solution to the isomorphism
𝜏 � unit+𝜏 . (Roughly speaking, imagine this as the type fix 𝛼 : “tp” is unit+𝛼 .)
Being a solution to that isomorphism means that it satisfies:

𝜇𝛼.unit + 𝛼 � unit + (𝜇𝛼.unit + 𝛼)

We write unfold for the function going from left to right because it “unfolds” the
equation, and fold𝜇𝛼.unit+𝛼 for the function going from right to left.
Remark 8.19. There is another version of recursive types, called equirecursive types,
which satisfy an equation nat = unit + nat [Pie02, Chapter 20]. These have some
benefits but are somewhat more complicated both theoretically and practically.

4.1 Syntax

We extend the syntax of PCF with product types, sum types, one new type former,
and two new term formers.

Types 𝜏 ::=
...

...
...

rec(𝛼.𝜏) 𝜇𝛼.𝜏 isorecursive types

Terms 𝑒 ::=
...

...
...

fold(𝛼.𝜏, 𝑒) fold𝜇𝛼.𝜏 (𝑒) fold
unfold(𝑒) unfold(𝑒) unfold

11



The syntax chart above introduces a new feature to our languages: binding
structure at the type level. The type constructor 𝜇𝛼.𝜏 binds a type variable 𝛼 that
may occur in the type expression 𝜏 . Up until now, the collection of types has been
specified by an inductively-defined judgment 𝜏 ty, but now that we have type
variables we must replace 𝜏 ty with the hypothetical judgment

Δ ⊢ 𝜏 ty
where Δ = 𝛼 ty, 𝛽 ty, . . . is a context of type variables.

The correspondence between ABT notation and well-formedness rules pre-
cisely mirrors that of ordinary terms with binding, but just to be explicit, we write
a few of the rules for Δ ⊢ 𝜏 ty below:

Δ, 𝛼 ty ⊢ 𝛼 ty

Δ ⊢ 𝜏1 ty Δ ⊢ 𝜏2 ty
Δ ⊢ 𝜏1 → 𝜏2 ty

Δ, 𝛼 ty ⊢ 𝜏 ty
Δ ⊢ 𝜇𝛼.𝜏 ty

. . .

As with other hypothetical judgments, we can define a notion of capture-
avoiding substitution of a type for a type variable, and the well-formed type
judgment satisfies weakening and substitution lemmas.
Lemma 8.20 (Weakening for types). If Δ ⊢ 𝜏 ty then Δ, 𝛼 ty ⊢ 𝜏 ty.
Lemma 8.21 (Substitution for types). If Δ, 𝛼 ty ⊢ 𝜏 ty and Δ ⊢ 𝜏 ′ ty then Δ ⊢
𝜏 [𝜏 ′/𝛼] ty.

In this language, terms never contain free type variables. Type annotations in
terms such as 𝜆 must be closed types, and although the type annotation in fold
does bind a type variable 𝛼 , that is the only type variable allowed:

𝛼 ty ⊢ 𝜏 ty Γ ⊢ 𝑒 tm
Γ ⊢ fold𝜇𝛼.𝜏 (𝑒) tm

4.2 Type system

The new typing rules are fairly straightforward: fold and unfold enact the two
directions of the isomorphism 𝜇𝛼.𝜏 � 𝜏 [(𝜇𝛼.𝜏)/𝛼].

Γ ⊢ 𝑒 : 𝜏 [(𝜇𝛼.𝜏)/𝛼]
Γ ⊢ fold𝜇𝛼.𝜏 (𝑒) : 𝜇𝛼.𝜏

𝜇-intro
Γ ⊢ 𝑒 : 𝜇𝛼.𝜏

Γ ⊢ unfold(𝑒) : 𝜏 [(𝜇𝛼.𝜏)/𝛼]
𝜇-elim

Note that the judgment Γ ⊢ 𝑒 : 𝜏 ranges only over closed types · ⊢ 𝜏 ty; we can
check by Lemma 8.21 that the above rules preserve this invariant.
Example 8.22. Abbreviating nat := 𝜇𝛼.unit + 𝛼 , we have

𝜆𝑛 : nat.unfold(𝑛) : nat → (unit + nat)
𝜆𝑥 : (unit + nat) .fold𝜇𝛼.unit+𝛼 (𝑥) : (unit + nat) → nat
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4.3 Operational semantics

The operational semantics are perhaps even more straightforward.

𝑣 val

fold𝜇𝛼.𝜏 (𝑣) val
𝑒 ↦−→ 𝑒′

fold𝜇𝛼.𝜏 (𝑒) ↦−→ fold𝜇𝛼.𝜏 (𝑒′)

𝑒 ↦−→ 𝑒′

unfold(𝑒) ↦−→ unfold(𝑒′)
𝑣 val

unfold(fold𝜇𝛼.𝜏 (𝑣)) ↦−→ 𝑣

4.4 Type safety

Yes.

5 Programming with isorecursive types

Now that we have a general mechanism for solving type equations, we can recover
PCF’s nat as a special case. We define:

nat := 𝜇𝛼.unit + 𝛼

zero := fold𝜇𝛼.unit+𝛼 (inlunit+nat(()))
suc(𝑒) := fold𝜇𝛼.unit+𝛼 (inrunit+nat(𝑒))

casenat(𝑒, 𝑒𝑧, 𝑥 .𝑒𝑠) := case unfold(𝑒) [inl(𝑦) → 𝑒𝑧] [inr(𝑥) → 𝑒𝑠]

vindicating our earlier observation that casenat looks like ordinary case.
But nat is far from the only interesting example of isorecursive types; in

fact, we can now define a large class of types known as algebraic data types,
named recursive sums of products that are a cornerstone of typed functional
programming languages such as OCaml and Haskell. Examples of algebraic data
types include lists, trees, and even binding-free expression languages such as the
boolean language we encountered in the first week of the semester.
Example 8.23. For any type 𝜏 we can define the type of lists of 𝜏 , list(𝜏), which
satisfies the isomorphism list(𝜏) � unit + (𝜏 × list(𝜏)).

list(𝜏) := 𝜇𝛼.unit + (𝜏 × 𝛼)
nil := fold𝜇𝛼.unit+(𝜏×𝛼 ) (inlunit+(𝜏×list(𝜏 ) ) (()))

cons(𝑒, ℓ) := fold𝜇𝛼.unit+(𝜏×𝛼 ) (inrunit+(𝜏×list(𝜏 ) ) ((𝑒, ℓ)))
caselist(𝜏 ) (𝑒, 𝑒𝑛, 𝑥 .𝑦.𝑒𝑐) :=

case unfold(𝑒) [inl(𝑧) → 𝑒𝑛] [inr(𝑤) → 𝑒𝑐 [fst(𝑤)/𝑥] [snd(𝑤)/𝑦]]
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Example 8.24. For any type 𝜏 , the type of binary trees labeled with 𝜏 , tree(𝜏),
satisfies the isomorphism tree(𝜏) � unit + 𝜏 + (tree(𝜏) × tree(𝜏)).
Example 8.25. Our boolean expression language from the second lecture, exp,
satisfies the isomorphism exp � unit + unit + exp + (exp × exp × exp).

in fact, fix can be defined using recursive types; see [Har16, Section 20.3].
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