
Lecture Notes 6
Sum types

Carlo Angiuli

B522: PL Foundations
February 24, 2025

In this lecture, we extend the STLC with an empty type and sum types (or
coproduct types), which are in a precise sense the opposites of the STLC’s unit
types and product types respectively. After defining empty types and sum types,
we prove type safety for the resulting system, consider generalizations of product
and sum types, and discuss what it means for two types to be the same.

These lecture notes correspond to Chapter 11 of Harper [Har16], although the
section on type isomorphisms is not discussed in Harper [Har16].

1 Syntax

As remarked in the previous lecture, we can generally add or remove type formers
from the STLC in a modular fashion. So although we will consider empty and sum
types as an extension to the STLC (with its unit, function, and product types), we
will not revisit unit, function, or product types until the end of this lecture when
we consider applications of empty and sum types.

Types 𝜏 ::=
...

...
...

void void empty type
sum(𝜏1, 𝜏2) 𝜏1 + 𝜏2 sum type

Terms 𝑒 ::=
...

...
...

abort(𝜏, 𝑒) abort𝜏 (𝑒) nullary case
inl(𝜏1, 𝜏2, 𝑒) inl𝜏1+𝜏2 (𝑒) left injection
inr(𝜏1, 𝜏2, 𝑒) inr𝜏1+𝜏2 (𝑒) right injection
case(𝑒, 𝑥1.𝑒1, 𝑥2.𝑒2) case 𝑒 [inl(𝑥1) → 𝑒1] case analysis

[inr(𝑥2) → 𝑒2]

1



Note that case analyses are an additional source of binding in this language.

2 Type system

We extend the STLC’s type system with the following rules.

Definition 6.1 (Type system). For 𝑥1 tm, . . . , 𝑥𝑛 tm ⊢ 𝑒 tm and 𝜏 ty, we define the
judgment 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏 (“𝑒 has type 𝜏 in context 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛”) by
the following inference rules:

. . .
Γ ⊢ 𝑒 : void

Γ ⊢ abort𝜏 (𝑒) : 𝜏
void-elim

Γ ⊢ 𝑒 : 𝜏1
Γ ⊢ inl𝜏1+𝜏2 (𝑒) : 𝜏1 + 𝜏2

+-intro1
Γ ⊢ 𝑒 : 𝜏2

Γ ⊢ inr𝜏1+𝜏2 (𝑒) : 𝜏1 + 𝜏2
+-intro2

Γ ⊢ 𝑒 : 𝜏1 + 𝜏2 Γ, 𝑥1 : 𝜏1 ⊢ 𝑒1 : 𝜏 Γ, 𝑥2 : 𝜏2 ⊢ 𝑒2 : 𝜏
Γ ⊢ case 𝑒 [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] : 𝜏

+-elim

The idea behind the type 𝜏1 +𝜏2 is that its terms are either terms of 𝜏1 (“tagged”
with inl), or terms of 𝜏2 (“tagged” with inr). Given a term of type 𝜏1 + 𝜏2, we
can case (or “match”) on whether it evaluates to an inl (resp., inr), and then use
the contained term of type 𝜏1 (resp., 𝜏2) in a further computation. Because the
type system does not know whether Γ ⊢ 𝑒 : 𝜏1 + 𝜏2 evaluates to inl or inr, the
two branches of the case must have the same type 𝜏 in order for the entire case
expression to have a determinate type 𝜏 .
Remark 6.2. The type 𝜏1 + 𝜏2 is also often called a tagged union of 𝜏1 and 𝜏2. In
Haskell, this type is written Either 𝜏1 𝜏2.

At the start of the lecture, we said that sum types are the “opposite” of product
types. Comparing the rules for sum and product types—

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

×-intro

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ fst(𝑒) : 𝜏1
×-elim1

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ snd(𝑒) : 𝜏2
×-elim2

—we see that 𝜏1 × 𝜏2 has one introduction form which takes two terms of type 𝜏1
and 𝜏2 respectively, and two elimination forms producing terms of type 𝜏1 and 𝜏2

2



respectively. In contrast, 𝜏1 + 𝜏2 has two introduction forms taking terms of type 𝜏1
and 𝜏2 respectively, and one elimination form with two additional premises which
are respectively given variables of type 𝜏1 or 𝜏2.

The void type is more confusing at first glance. Just as unit is a nullary
product type (a pair of zero things), void is a nullary sum type (a tagged union
of zero types). There are zero introduction rules for void, just as there are two
introduction rules for the binary sum 𝜏1 + 𝜏2. There is one elimination rule called
abort, which can be thought of as a zero-way case analysis on a tagged union of
zero types, just as case analysis on 𝜏1 + 𝜏2 is a two-way case analysis. All of the
zero branches of abort have the type 𝜏 , as does the abort itself.

Comparing to the unit type, unit has one introduction form with no premises
and zero elimination forms; void has zero introduction forms and one elimination
form with no additional premises.

Γ ⊢ () : unit
unit-intro

Exercise 6.3. Although void has no introduction rules, there are terms 𝑒 satisfying
Γ ⊢ 𝑒 : void. List several different such 𝑒 .

Our type system still assigns a unique type to every term. (We still require
that all variables in Γ are distinct.)

Lemma 6.4 (Uniqueness of types). If Γ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒 : 𝜏 ′ then 𝜏 = 𝜏 ′.

Exercise 6.5. The subscripts on inl𝜏1+𝜏2 (𝑒), inr𝜏1+𝜏2 (𝑒), and abort𝜏 (𝑒) are needed
for uniqueness of types to hold. Why?

The type system still satisfies the structural properties of hypothetical judg-
ments: reflexivity, exchange, substitution (to be discussed), and weakening.

Lemma 6.6 (Weakening). If Γ ⊢ 𝑒 : 𝜏 and 𝜏 ′ ty then Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 .

3 Operational semantics

We extend the STLC’s operational semantics with the following rules.

Definition 6.7 (Values). For · ⊢ 𝑒 tm, we define the judgment 𝑒 val (“𝑒 is a value”)
by the following inference rules.

. . .
𝑣 val

inl𝜏1+𝜏2 (𝑣) val
𝑣 val

inr𝜏1+𝜏2 (𝑣) val

There are two new value forms because there are two new introduction forms.

3



Definition 6.8 (Small-step operational semantics). For · ⊢ 𝑒 tm, we define the
judgment 𝑒 ↦−→ 𝑒′ (“𝑒 steps to 𝑒′”) by the following inference rules.

𝑒 ↦−→ 𝑒′

abort𝜏 (𝑒) ↦−→ abort𝜏 (𝑒′)
𝑒 ↦−→ 𝑒′

inl𝜏1+𝜏2 (𝑒) ↦−→ inl𝜏1+𝜏2 (𝑒′)

𝑒 ↦−→ 𝑒′

inr𝜏1+𝜏2 (𝑒) ↦−→ inr𝜏1+𝜏2 (𝑒′)
𝑒 ↦−→ 𝑒′

case 𝑒 [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→
case 𝑒′ [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2]

𝑣 val

case inl𝜏1+𝜏2 (𝑣) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→ 𝑒1 [𝑣/𝑥1]

𝑣 val

case inr𝜏1+𝜏2 (𝑣) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→ 𝑒2 [𝑣/𝑥2]

Remark 6.9. Just as the type annotations on lambdas do not play a role in their
operational semantics, neither do the type annotations above.
Remark 6.10. One could again consider a call-by-name operational semantics.

The usual properties hold.

Lemma 6.11 (Finality of values). If 𝑣 val then there is no 𝑒′ such that 𝑣 ↦−→ 𝑒′.

Lemma 6.12 (Determinacy). If 𝑒 ↦−→ 𝑒′ and 𝑒 ↦−→ 𝑒′′ then 𝑒′ = 𝑒′′.

Lemma 6.13. If · ⊢ 𝑒 tm and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ tm.

4 Type safety

Well-typed terms still don’t get stuck. We once again prove canonical forms
(Lemma 6.16), progress (Lemma 6.17), substitution (Lemma 6.18), and preservation
(Lemma 6.19). Although the shape of the proof is unchanged, some of the new
cases are interesting; see for instance the void clause of Lemma 6.16.

Theorem 6.14 (Type safety).

1. If · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ : 𝜏 .

2. If · ⊢ 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′.

4



Remark 6.15. In the following proofs, we are going to skip over the cases relating
to unit, function, and product types from the previous lecture. This is potentially
erroneous because some of those cases relied on inversion to say that the only rule
that can apply is such-and-such, and inversion lemmas can be disrupted whenever
we add new rules. You can trust me that the previous proof cases continue to
work—I am a doctor—or you can check them yourself. At a high level, the reason
is that none of our new rules mention the old type or term constructors.

Lemma 6.16 (Canonical forms). Suppose · ⊢ 𝑣 : 𝜏 and 𝑣 val. Then:

1. If 𝜏 = unit, 𝜏 = 𝜏1 → 𝜏2, or 𝜏 = 𝜏1 × 𝜏2, refer to the previous lecture.

2. It is impossible that 𝜏 = void.

3. If 𝜏 = 𝜏1 + 𝜏2, then either:

(a) 𝑣 = inl𝜏1+𝜏2 (𝑣1) where 𝑣1 val and · ⊢ 𝑣1 : 𝜏1, or
(b) 𝑣 = inr𝜏1+𝜏2 (𝑣2) where 𝑣2 val and · ⊢ 𝑣2 : 𝜏2.

Proof. By inversion on · ⊢ 𝑣 : 𝜏 and 𝑣 val. □

Lemma 6.17 (Progress). If · ⊢ 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′ for some 𝑒′.

Proof. By rule induction on · ⊢ 𝑒 : 𝜏 , focusing on the new cases.

• Case
· ⊢ 𝑒 : void

· ⊢ abort𝜏 (𝑒) : 𝜏
void-elim :

abort𝜏 (𝑒) is never a value, so we show that it takes a step. By the IH, either
𝑒 val or 𝑒 ↦−→ 𝑒′. Lemma 6.16 says that terms of type void cannot be values,
so the only possibility is 𝑒 ↦−→ 𝑒′, in which case abort𝜏 (𝑒) ↦−→ abort𝜏 (𝑒′).

• Cases
· ⊢ 𝑒 : 𝜏1

· ⊢ inl𝜏1+𝜏2 (𝑒) : 𝜏1 + 𝜏2
+-intro1 ,

· ⊢ 𝑒 : 𝜏2
· ⊢ inr𝜏1+𝜏2 (𝑒) : 𝜏1 + 𝜏2

+-intro2 :

By the IH, either 𝑒 val or 𝑒 ↦−→ 𝑒′. If 𝑒 val then this term is also a value; if
𝑒 ↦−→ 𝑒′ then this term also takes a step.

• Case
· ⊢ 𝑒 : 𝜏1 + 𝜏2 𝑥1 : 𝜏1 ⊢ 𝑒1 : 𝜏 𝑥2 : 𝜏2 ⊢ 𝑒2 : 𝜏
· ⊢ case 𝑒 [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] : 𝜏

+-elim :

By the IH on 𝑒 , either 𝑒 val or 𝑒 ↦−→ 𝑒′. (Note that we don’t have IHs for 𝑒1
or 𝑒2, because they are not closed!) If 𝑒 ↦−→ 𝑒′, then the entire case steps to
case 𝑒′ [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2]. If 𝑒 val, then by Lemma 6.16 there
are two possibilities:

5



– 𝑒 = inl𝜏1+𝜏2 (𝑣1) where 𝑣1 val and · ⊢ 𝑣1 : 𝜏1, in which case the following
step occurs:

𝑣1 val

case inl𝜏1+𝜏2 (𝑣1) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→ 𝑒1 [𝑣1/𝑥1]

– 𝑒 = inr𝜏1+𝜏2 (𝑣2) where 𝑣2 val and · ⊢ 𝑣2 : 𝜏2, in which case the following
step occurs:

𝑣2 val

case inr𝜏1+𝜏2 (𝑣2) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→ 𝑒2 [𝑣2/𝑥2]

□

Lemma 6.18 (Substitution). If Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 ′ then Γ ⊢ 𝑒 [𝑒′/𝑥] : 𝜏 .

Proof. By rule induction on Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 , where nothing different happens in
the new cases. □

Lemma 6.19 (Preservation). If · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ : 𝜏 .

Proof. By rule induction on 𝑒 ↦−→ 𝑒′, focusing on the new cases.

• The four “search transition” or congruence rules (for abort, inl, inr, and
case) follow the same pattern as in the previous lecture.

• Case
𝑣 val

case inl𝜏1+𝜏2 (𝑣) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→ 𝑒1 [𝑣/𝑥1]
:

We must show · ⊢ 𝑒1 [𝑣/𝑥1] : 𝜏 . By successive inversion on the typing
judgment · ⊢ case . . . : 𝜏 ,

· ⊢ 𝑣 : 𝜏1
· ⊢ inl𝜏1+𝜏2 (𝑣) : 𝜏1 + 𝜏2 𝑥1 : 𝜏1 ⊢ 𝑒1 : 𝜏 𝑥2 : 𝜏2 ⊢ 𝑒2 : 𝜏
· ⊢ case inl𝜏1+𝜏2 (𝑣) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] : 𝜏

The result follows by Lemma 6.18, 𝑥1 : 𝜏1 ⊢ 𝑒1 : 𝜏 , and · ⊢ 𝑣 : 𝜏1.

• Case
𝑣 val

case inr𝜏1+𝜏2 (𝑣) [inl(𝑥1) → 𝑒1] [inr(𝑥2) → 𝑒2] ↦−→ 𝑒2 [𝑣/𝑥2]
:

Similar to previous case. □

6



Recall that type safety tells us that any closed term of type 𝜏 must either
evaluate (in some finite number of steps) to a value of type 𝜏 , or else diverge (fail
to terminate). Because there are no values of type void, we conclude from type
safety that all closed terms of type void must diverge.
Remark 6.20. In fact, because termination holds for this language, there are no
closed terms of type void, although this fact is not a corollary of type safety.

Theorem 6.21 (Termination). If · ⊢ 𝑒 : 𝜏 then 𝑒 ↦−→∗ 𝑣 where 𝑣 val.

Exercise 6.22. Using the typing rules from the previous lecture as well as this
lecture, attempt to prove “directly” that it is impossible for · ⊢ 𝑒 : void to hold.
What goes wrong?

5 Named finite sums and products

We have covered the nullary and binary cases of product and sum types, but they
generalize directly to any finite arity:

• If we primitively added a type constructor 𝜏1 × · · · × 𝜏𝑛 (where 𝑛 is any
natural number), it would have one “𝑛-tuple” introduction form and 𝑛 “𝑖th
projection” elimination forms.

• If we primitively added a type constructor 𝜏1+· · ·+𝜏𝑛 (where 𝑛 is any natural
number), it would have 𝑛 “𝑖th inclusion” introduction forms and one “𝑛ary
case split” elimination form.

Harper [Har16, Chapters 10–11] lists rules for finite product and sum types.
Most programming languages have finite product types in one guise or another;

fewer programming languages have finite sum types, although they are common
in functional programming languages. Generally, these finite product/sum types
are named, in the sense that programmers can give a custom name to a particular
finite product/sum type and its projections/inclusions.

5.1 Named products: records/structs

Named product types are usually called record types or structs, and their compo-
nents are usually called fields. Even C has structs:

struct point_t {
int x;
int y;

};

7



struct point_t p = { 1, 2 };
int px = p.x; // 1
int py = p.y; // 2

So does Racket (although they are not typed, of course):

(struct point (x y))

(define p (point 1 2))
(point-x p)
(point-y p)

5.2 Named sums: tagged unions

Named sums are most common in typed functional programming languages. In
Haskell, one might write:

data Value = Str String | Bln Bool

show :: Value -> String
show x = case x of

Str s -> s
Bln b -> if b then "true" else "false"

In Racket, you have used the idea of tagged unions (without types) many times:

(define (expr->string e)
(match e
[`(int ,x) (number->string x)]
[`(str ,y) y]))

remark about C’s “void”

5.3 Nesting products and sums

It is particularly profitable to combine named finite products and sums. As a first
example, the type of booleans can be recovered as a named sum of products:

bool := unit + unit

true := inlunit+unit(())
false := inrunit+unit(())

if(𝑒, 𝑒′, 𝑒′′) := case 𝑒 [inl(_) → 𝑒′] [inr(_) → 𝑒′′]

8



Note that the variables are not used in the case, nor are they particularly useful
because they have type unit.
Remark 6.23. Booleans also showcase the fact sum types are useful even when the
two types are the same, and even when the two types both seem useless!
Exercise 6.24. For any types 𝜏1 and 𝜏2, define functions

inl? : (𝜏1 + 𝜏2) → bool

inr? : (𝜏1 + 𝜏2) → bool

that return true iff their inputs have the specified form.
Another example is the maybe or option type.

maybe(𝜏) := unit + 𝜏
none := inlunit+𝜏 (())

just(𝑒) := inrunit+𝜏 (𝑒)
fromMaybe(𝑒, 𝑒𝑛, 𝑥 .𝑒 𝑗 ) := case 𝑒 [inl(_) → 𝑒𝑛] [inr(𝑦) → 𝑒 𝑗 ]

Note that to use a term of type maybe(𝜏) one must be prepared for the possibility
that it turns out to be none.

6 Type isomorphisms

Rather than directly defining 𝑛ary product and sum types for any natural number
𝑛, we could simply iterate the binary product/sum, defining𝐴×𝐵×𝐶 := 𝐴×(𝐵×𝐶).
This immediately raises a few questions:

• Does it matter whether we write 𝐴 × (𝐵 ×𝐶) or (𝐴 × 𝐵) ×𝐶?

• How do we define the 𝑛ary product for 𝑛 = 0 or 𝑛 = 1? We have said that
unit is a “nullary product,” but does this work formally? Does that mean
the “unary product” should be 𝐴 × unit (or unit ×𝐴)?

It turns out that the types𝐴× (𝐵×𝐶) and (𝐴×𝐵) ×𝐶 are the “same” in a certain
sense, although we have to be careful what we mean by this. By Lemma 6.16, they
clearly do not have the same values: the former has values (𝑎, (𝑏, 𝑐)) where 𝑎, 𝑏, 𝑐
are values of the appropriate types, whereas the latter has values ((𝑎, 𝑏), 𝑐). In fact,
by Lemma 6.4, no term has both types. On the other hand, there is clearly a strong
relationship between these types’ values.

9



Although these types are different, there are functions back and forth:

to : (𝐴 × (𝐵 ×𝐶)) → ((𝐴 × 𝐵) ×𝐶)
to := 𝜆𝑥 : 𝐴 × (𝐵 ×𝐶) .((fst(𝑥), fst(snd(𝑥))), snd(snd(𝑥)))

from : ((𝐴 × 𝐵) ×𝐶) → (𝐴 × (𝐵 ×𝐶))
from := 𝜆𝑦 : (𝐴 × 𝐵) ×𝐶.(fst(fst(𝑦)), (snd(fst(𝑦)), snd(𝑦)))

and these functions intuitively “cancel out” in the sense that

fromTo := 𝜆𝑥 : 𝐴 × (𝐵 ×𝐶) .from (to 𝑥)

is the same as the identity function I on 𝐴 × (𝐵 ×𝐶), and

toFrom := 𝜆𝑦 : (𝐴 × 𝐵) ×𝐶.to (from 𝑦)

is the same as the identity function I on (𝐴 × 𝐵) ×𝐶 .
However, it is not clear what we mean by “the same.” Neither fromTo nor

toFrom evaluates to I: in fact, all three of these are already values. What we can
prove is that if we apply fromTo and I to a term · ⊢ 𝑝 : 𝐴 × (𝐵 ×𝐶), then they will
produce the same results. We say that fromTo and I are extensionally equal.

Lemma 6.25. For any types 𝐴, 𝐵,𝐶 and any · ⊢ 𝑝 : 𝐴 × (𝐵 ×𝐶), fromTo 𝑝 and I 𝑝
either both diverge or both evaluate to the same value.

Proof. By Theorem 6.14 and Lemma 6.16, 𝑝 either diverges or evaluates to (𝑎, (𝑏, 𝑐))
where 𝑎, 𝑏, 𝑐 are values, · ⊢ 𝑎 : 𝐴, · ⊢ 𝑏 : 𝐵, and · ⊢ 𝑐 : 𝐶 . If 𝑝 diverges, then fromTo 𝑝
and I both diverge because our operational semantics evaluates function arguments
until they reach a value. If instead 𝑝 ↦−→∗ (𝑎, (𝑏, 𝑐)), then so does I 𝑝 , and:

fromTo 𝑝

↦−→∗ fromTo (𝑎, (𝑏, 𝑐))
↦−→ from (to (𝑎, (𝑏, 𝑐)))
↦−→ from ((fst((𝑎, (𝑏, 𝑐))), fst(snd((𝑎, (𝑏, 𝑐))))), snd(snd((𝑎, (𝑏, 𝑐)))))
↦−→∗ from ((𝑎, 𝑏), 𝑐)
↦−→ from (fst(fst(((𝑎, 𝑏), 𝑐)), (snd(fst(((𝑎, 𝑏), 𝑐)), snd(((𝑎, 𝑏), 𝑐)))
↦−→∗ (𝑎, (𝑏, 𝑐)) □

Remark 6.26. Given Theorem 6.21 we can of course rule out the possibility that both
diverge; however, it is instructive to see what we can prove without termination.

10



Remark 6.27. This proof only works in the by-value operational semantics. In a
by-name operational semantics, it is a priori possible for 𝑝 to terminate but for
fst(𝑝) and hence fromTo 𝑝 to diverge; thus we cannot prove the by-name version
of Lemma 6.25 without assuming termination.

If two types 𝐴, 𝐵 have functions going back and forth that cancel up to exten-
sional equality, we say that those types are isomorphic and write 𝐴 � 𝐵. We can
prove various laws of “type arithmetic”: commutativity, associativity, distributivity,
and unit laws where unit plays the role of 1 and void plays the role of 0:

𝐴 × 𝐵 � 𝐵 ×𝐴

𝐴 + 𝐵 � 𝐵 +𝐴

𝐴 × (𝐵 ×𝐶) � (𝐴 × 𝐵) ×𝐶

𝐴 + (𝐵 +𝐶) � (𝐴 + 𝐵) +𝐶
(𝐴 + 𝐵) ×𝐶 � (𝐴 ×𝐶) + (𝐵 ×𝐶)
𝐴 × void � void

𝐴 × unit � 𝐴

𝐴 + void � 𝐴

We can even prove arithmetic laws involving function types, where 𝐴 → 𝐵

behaves like exponentiation 𝐵𝐴:

unit → 𝐶 � 𝐶

void → 𝐶 � unit

(𝐴 × 𝐵) → 𝐶 � 𝐴 → (𝐵 → 𝐶)
(𝐴 + 𝐵) → 𝐶 � (𝐴 → 𝐶) × (𝐵 → 𝐶)

This latter group of isomorphisms is more subtle because they involve nested
function types. Let’s look at the first isomorphism as an example:

to : (unit → 𝐶) → 𝐶

to := 𝜆𝑥 : unit → 𝐶.𝑥 ()
from : 𝐶 → (unit → 𝐶)
from := 𝜆𝑦 : 𝐶.𝜆𝑥 : unit.𝑦

Let us try to prove that

fromTo := 𝜆𝑥 : unit → 𝐶.from (to 𝑥))

11



is extensionally equal to 𝜆𝑥 : unit → 𝐶.𝑥 . Suppose we are given · ⊢ 𝑓 : unit → 𝐶

with 𝑓 ↦−→∗ 𝜆𝑧 : unit.𝑒 . Then (𝜆𝑥 : unit → 𝐶.𝑥) 𝑓 ↦−→∗ 𝜆𝑧 : unit.𝑒 , but:

fromTo 𝑓

↦−→∗ fromTo (𝜆𝑧 : unit.𝑒)
↦−→ from (to (𝜆𝑧 : unit.𝑒))
↦−→∗ from (𝑒 [()/𝑧])

Without Theorem 6.21 we cannot be sure that 𝑒 [()/𝑧] terminates. But let us
proceed under the assumption that 𝑒 [()/𝑧] ↦−→∗ 𝑣 where 𝑣 val. Then:

from (𝑒 [()/𝑧])
↦−→∗ from 𝑣

↦−→ 𝜆𝑥 : unit.𝑣 ≠ 𝜆𝑧 : unit.𝑒

In this case, fromTo and I are not extensionally equal—even assuming Theo-
rem 6.21—because they produce different values 𝜆𝑥 : unit.𝑣 and 𝜆𝑧 : unit.𝑒 . On
the other hand, those values are extensionally equal, because whenever we apply
both to a term of type unit, that term (by Theorem 6.21 and Lemma 6.16) will
evaluate to () and thus both sides will evaluate to 𝑣 . That is, our two functions are
extensionally equal up to extensional equality.

Lemma 6.28. For any type 𝐶 , if we apply · ⊢ fromTo, I : (unit → 𝐶) → (unit →
𝐶) to a term · ⊢ 𝑓 : unit → 𝐶 , and then apply each result to a term · ⊢ 𝑒 : unit,
then we will obtain equal values of type 𝐶 .

Remark 6.29. As we will see later, the correct fully general notion of extensional
equality is given by structural recursion on types: two functions are extensionally
equal at type 𝐴 → 𝐵 if, when given two extensionally equal terms at type 𝐴, they
produce two extensionally equal terms at type 𝐵.

write out the definition?
remark about denotational semantics here (cardinality)

References

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.
doi: 10.1017/CBO9781316576892.

12

https://doi.org/10.1017/CBO9781316576892

	6 Sum types
	Syntax
	Type system
	Operational semantics
	Type safety
	Named finite sums and products
	Named products: records/structs
	Named sums: tagged unions
	Nesting products and sums

	Type isomorphisms


